Genstruct-7B / app.py
davanstrien's picture
davanstrien HF staff
Create app.py
b0b38f0 verified
raw
history blame
997 Bytes
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces
MODEL_NAME = 'NousResearch/Genstruct-7B'
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map='cuda', load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
@spaces.GPU
def generate_text(title, content):
msg = [{
'title': title,
'content': content
}]
inputs = tokenizer.apply_chat_template(msg, return_tensors='pt').cuda()
output = tokenizer.decode(model.generate(inputs, max_new_tokens=512)[0]).split(tokenizer.eos_token)[0]
return output
demo = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(label="Title"),
gr.Textbox(label="Content", lines=5)
],
outputs=gr.Textbox(label="Generated Output", lines=10),
title="Genstruct-7B Text Generation Demo",
description="Enter a title and content to generate text using the Genstruct-7B model."
)
if __name__ == "__main__":
demo.launch()