File size: 997 Bytes
b0b38f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces


MODEL_NAME = 'NousResearch/Genstruct-7B'

model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map='cuda', load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

@spaces.GPU
def generate_text(title, content):
    msg = [{
        'title': title,
        'content': content
    }]
    inputs = tokenizer.apply_chat_template(msg, return_tensors='pt').cuda()
    output = tokenizer.decode(model.generate(inputs, max_new_tokens=512)[0]).split(tokenizer.eos_token)[0]
    return output

demo = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.Textbox(label="Title"),
        gr.Textbox(label="Content", lines=5)
    ],
    outputs=gr.Textbox(label="Generated Output", lines=10),
    title="Genstruct-7B Text Generation Demo",
    description="Enter a title and content to generate text using the Genstruct-7B model."
)

if __name__ == "__main__":
    demo.launch()