|
|
|
"""Contains the function to build optimizer for runner.""" |
|
|
|
import math |
|
|
|
import torch |
|
|
|
__all__ = ['build_optimizer', 'build_optimizers'] |
|
|
|
_ALLOWED_OPT_TYPES = ['SGD', 'ADAM'] |
|
|
|
|
|
def build_optimizer(config, model): |
|
"""Builds an optimizer for the given model. |
|
|
|
Basically, the configuration is expected to contain following settings: |
|
|
|
(1) opt_type: The type of the optimizer. (required) |
|
(2) base_lr: The base learning rate for all parameters. (required) |
|
(3) base_wd: The base weight decay for all parameters. (default: 0.0) |
|
(4) bias_lr_multiplier: The learning rate multiplier for bias parameters. |
|
(default: 1.0) |
|
(5) bias_wd_multiplier: The weight decay multiplier for bias parameters. |
|
(default: 1.0) |
|
(6) **kwargs: Additional settings for the optimizer, such as `momentum`. |
|
|
|
Args: |
|
config: The configuration used to build the optimizer. |
|
model: The model which the optimizer serves. |
|
|
|
Returns: |
|
A `torch.optim.Optimizer`. |
|
|
|
Raises: |
|
ValueError: The `opt_type` is not supported. |
|
NotImplementedError: If `opt_type` is not implemented. |
|
""" |
|
assert isinstance(config, dict) |
|
opt_type = config['opt_type'].upper() |
|
base_lr = config['base_lr'] |
|
base_wd = config.get('base_wd', 0.0) |
|
bias_lr_multiplier = config.get('bias_lr_multiplier', 1.0) |
|
bias_wd_multiplier = config.get('bias_wd_multiplier', 1.0) |
|
|
|
if opt_type not in _ALLOWED_OPT_TYPES: |
|
raise ValueError(f'Invalid optimizer type `{opt_type}`!' |
|
f'Allowed types: {_ALLOWED_OPT_TYPES}.') |
|
|
|
model_params = [] |
|
for param_name, param in model.named_parameters(): |
|
param_group = {'params': [param]} |
|
if param.requires_grad: |
|
if 'bias' in param_name: |
|
param_group['lr'] = base_lr * bias_lr_multiplier |
|
param_group['weight_decay'] = base_wd * bias_wd_multiplier |
|
else: |
|
param_group['lr'] = base_lr |
|
param_group['weight_decay'] = base_wd |
|
model_params.append(param_group) |
|
|
|
if opt_type == 'SGD': |
|
return torch.optim.SGD(params=model_params, |
|
lr=base_lr, |
|
momentum=config.get('momentum', 0.9), |
|
dampening=config.get('dampening', 0), |
|
weight_decay=base_wd, |
|
nesterov=config.get('nesterov', False)) |
|
if opt_type == 'ADAM': |
|
return AdamOptimizer(params=model_params, |
|
lr=base_lr, |
|
betas=config.get('betas', (0.9, 0.999)), |
|
eps=config.get('eps', 1e-8), |
|
weight_decay=base_wd, |
|
amsgrad=config.get('amsgrad', False)) |
|
raise NotImplementedError(f'Not implemented optimizer type `{opt_type}`!') |
|
|
|
|
|
def build_optimizers(opt_config, runner): |
|
"""Builds optimizers for the given runner. |
|
|
|
The `opt_config` should be a dictionary, where keys are model names and |
|
each value is the optimizer configuration for a particumar model. All built |
|
optimizers will be saved in `runner.optimizers`, which is also a dictionary. |
|
|
|
NOTE: The model names should match the keys of `runner.models`. |
|
|
|
Args: |
|
opt_config: The configuration to build the optimizers. |
|
runner: The runner to build the optimizer for. |
|
""" |
|
if not opt_config: |
|
return |
|
|
|
assert isinstance(opt_config, dict) |
|
for name, config in opt_config.items(): |
|
if not name or not config: |
|
continue |
|
if name in runner.optimizers: |
|
raise AttributeError(f'Optimizer `{name}` has already existed!') |
|
if name not in runner.models: |
|
raise AttributeError(f'Model `{name}` is missing!') |
|
runner.optimizers[name] = build_optimizer(config, runner.models[name]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AdamOptimizer(torch.optim.Optimizer): |
|
r"""Implements Adam algorithm. |
|
|
|
It has been proposed in `Adam: A Method for Stochastic Optimization`_. |
|
The implementation of the L2 penalty follows changes proposed in |
|
`Decoupled Weight Decay Regularization`_. |
|
|
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): learning rate (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
amsgrad (boolean, optional): whether to use the AMSGrad variant of this |
|
algorithm from the paper `On the Convergence of Adam and Beyond`_ |
|
(default: False) |
|
|
|
.. _Adam\: A Method for Stochastic Optimization: |
|
https://arxiv.org/abs/1412.6980 |
|
.. _Decoupled Weight Decay Regularization: |
|
https://arxiv.org/abs/1711.05101 |
|
.. _On the Convergence of Adam and Beyond: |
|
https://openreview.net/forum?id=ryQu7f-RZ |
|
""" |
|
|
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, |
|
weight_decay=0, amsgrad=False): |
|
if not 0.0 <= lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 <= eps: |
|
raise ValueError("Invalid epsilon value: {}".format(eps)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
|
if not 0.0 <= weight_decay: |
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
|
defaults = dict(lr=lr, betas=betas, eps=eps, |
|
weight_decay=weight_decay, amsgrad=amsgrad) |
|
super(AdamOptimizer, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super(AdamOptimizer, self).__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault('amsgrad', False) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad |
|
if grad.is_sparse: |
|
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') |
|
amsgrad = group['amsgrad'] |
|
assert not amsgrad |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state['step'] = 0 |
|
|
|
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
|
|
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
if amsgrad: |
|
|
|
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
|
|
|
|
|
beta1, beta2 = group['betas'] |
|
|
|
state['step'] += 1 |
|
bias_correction1 = 1 - beta1 ** state['step'] |
|
bias_correction2 = 1 - beta2 ** state['step'] |
|
|
|
if group['weight_decay'] != 0: |
|
grad = grad.add(p, alpha=group['weight_decay']) |
|
|
|
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) |
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 |
|
|
|
p.addcdiv_(exp_avg, exp_avg_sq.sqrt().add_(group['eps']) , value=-step_size) |
|
|
|
return loss |
|
|
|
|
|
|
|
|
|
|
|
|