File size: 9,876 Bytes
8c212a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# python3.7
"""Contains the function to build optimizer for runner."""

import math

import torch

__all__ = ['build_optimizer', 'build_optimizers']

_ALLOWED_OPT_TYPES = ['SGD', 'ADAM']


def build_optimizer(config, model):
    """Builds an optimizer for the given model.

    Basically, the configuration is expected to contain following settings:

    (1) opt_type: The type of the optimizer. (required)
    (2) base_lr: The base learning rate for all parameters. (required)
    (3) base_wd: The base weight decay for all parameters. (default: 0.0)
    (4) bias_lr_multiplier: The learning rate multiplier for bias parameters.
        (default: 1.0)
    (5) bias_wd_multiplier: The weight decay multiplier for bias parameters.
        (default: 1.0)
    (6) **kwargs: Additional settings for the optimizer, such as `momentum`.

    Args:
        config: The configuration used to build the optimizer.
        model: The model which the optimizer serves.

    Returns:
        A `torch.optim.Optimizer`.

    Raises:
        ValueError: The `opt_type` is not supported.
        NotImplementedError: If `opt_type` is not implemented.
    """
    assert isinstance(config, dict)
    opt_type = config['opt_type'].upper()
    base_lr = config['base_lr']
    base_wd = config.get('base_wd', 0.0)
    bias_lr_multiplier = config.get('bias_lr_multiplier', 1.0)
    bias_wd_multiplier = config.get('bias_wd_multiplier', 1.0)

    if opt_type not in _ALLOWED_OPT_TYPES:
        raise ValueError(f'Invalid optimizer type `{opt_type}`!'
                         f'Allowed types: {_ALLOWED_OPT_TYPES}.')

    model_params = []
    for param_name, param in model.named_parameters():
        param_group = {'params': [param]}
        if param.requires_grad:
            if 'bias' in param_name:
                param_group['lr'] = base_lr * bias_lr_multiplier
                param_group['weight_decay'] = base_wd * bias_wd_multiplier
            else:
                param_group['lr'] = base_lr
                param_group['weight_decay'] = base_wd
        model_params.append(param_group)

    if opt_type == 'SGD':
        return torch.optim.SGD(params=model_params,
                               lr=base_lr,
                               momentum=config.get('momentum', 0.9),
                               dampening=config.get('dampening', 0),
                               weight_decay=base_wd,
                               nesterov=config.get('nesterov', False))
    if opt_type == 'ADAM':
        return AdamOptimizer(params=model_params,
                             lr=base_lr,
                             betas=config.get('betas', (0.9, 0.999)),
                             eps=config.get('eps', 1e-8),
                             weight_decay=base_wd,
                             amsgrad=config.get('amsgrad', False))
    raise NotImplementedError(f'Not implemented optimizer type `{opt_type}`!')


def build_optimizers(opt_config, runner):
    """Builds optimizers for the given runner.

    The `opt_config` should be a dictionary, where keys are model names and
    each value is the optimizer configuration for a particumar model. All built
    optimizers will be saved in `runner.optimizers`, which is also a dictionary.

    NOTE: The model names should match the keys of `runner.models`.

    Args:
        opt_config: The configuration to build the optimizers.
        runner: The runner to build the optimizer for.
    """
    if not opt_config:
        return

    assert isinstance(opt_config, dict)
    for name, config in opt_config.items():
        if not name or not config:
            continue
        if name in runner.optimizers:
            raise AttributeError(f'Optimizer `{name}` has already existed!')
        if name not in runner.models:
            raise AttributeError(f'Model `{name}` is missing!')
        runner.optimizers[name] = build_optimizer(config, runner.models[name])


# We slightly modify the Adam optimizer from `torch.optim`. since there exists
# some discrepancies between the `torch.optim` version and the TensorFlow
# version. The main difference is where to add the `epsilon`.
# TODO: The modified optimizer does not support `amsgrad` any more.

# pylint: disable=line-too-long
# pylint: disable=unneeded-not
# pylint: disable=misplaced-comparison-constant
# pylint: disable=super-with-arguments

class AdamOptimizer(torch.optim.Optimizer):
    r"""Implements Adam algorithm.

    It has been proposed in `Adam: A Method for Stochastic Optimization`_.
    The implementation of the L2 penalty follows changes proposed in
    `Decoupled Weight Decay Regularization`_.

    Arguments:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        amsgrad (boolean, optional): whether to use the AMSGrad variant of this
            algorithm from the paper `On the Convergence of Adam and Beyond`_
            (default: False)

    .. _Adam\: A Method for Stochastic Optimization:
        https://arxiv.org/abs/1412.6980
    .. _Decoupled Weight Decay Regularization:
        https://arxiv.org/abs/1711.05101
    .. _On the Convergence of Adam and Beyond:
        https://openreview.net/forum?id=ryQu7f-RZ
    """

    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
                 weight_decay=0, amsgrad=False):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
        if not 0.0 <= weight_decay:
            raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
        defaults = dict(lr=lr, betas=betas, eps=eps,
                        weight_decay=weight_decay, amsgrad=amsgrad)
        super(AdamOptimizer, self).__init__(params, defaults)

    def __setstate__(self, state):
        super(AdamOptimizer, self).__setstate__(state)
        for group in self.param_groups:
            group.setdefault('amsgrad', False)

    @torch.no_grad()
    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad
                if grad.is_sparse:
                    raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
                amsgrad = group['amsgrad']
                assert not amsgrad

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    if amsgrad:
                        # Maintains max of all exp. moving avg. of sq. grad. values
                        state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                # if amsgrad:
                #     max_exp_avg_sq = state['max_exp_avg_sq']
                beta1, beta2 = group['betas']

                state['step'] += 1
                bias_correction1 = 1 - beta1 ** state['step']
                bias_correction2 = 1 - beta2 ** state['step']

                if group['weight_decay'] != 0:
                    grad = grad.add(p, alpha=group['weight_decay'])

                # Decay the first and second moment running average coefficient
                exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
                exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)

                # if amsgrad:
                #     # Maintains the maximum of all 2nd moment running avg. till now
                #     torch.maximum(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
                #     # Use the max. for normalizing running avg. of gradient
                #     denom = (max_exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
                # else:
                #     denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])

                # step_size = group['lr'] / bias_correction1

                # p.addcdiv_(exp_avg, denom, value=-step_size)

                step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1

                p.addcdiv_(exp_avg, exp_avg_sq.sqrt().add_(group['eps']) , value=-step_size)

        return loss

# pylint: enable=line-too-long
# pylint: enable=unneeded-not
# pylint: enable=misplaced-comparison-constant
# pylint: enable=super-with-arguments