File size: 9,876 Bytes
8c212a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# python3.7
"""Contains the function to build optimizer for runner."""
import math
import torch
__all__ = ['build_optimizer', 'build_optimizers']
_ALLOWED_OPT_TYPES = ['SGD', 'ADAM']
def build_optimizer(config, model):
"""Builds an optimizer for the given model.
Basically, the configuration is expected to contain following settings:
(1) opt_type: The type of the optimizer. (required)
(2) base_lr: The base learning rate for all parameters. (required)
(3) base_wd: The base weight decay for all parameters. (default: 0.0)
(4) bias_lr_multiplier: The learning rate multiplier for bias parameters.
(default: 1.0)
(5) bias_wd_multiplier: The weight decay multiplier for bias parameters.
(default: 1.0)
(6) **kwargs: Additional settings for the optimizer, such as `momentum`.
Args:
config: The configuration used to build the optimizer.
model: The model which the optimizer serves.
Returns:
A `torch.optim.Optimizer`.
Raises:
ValueError: The `opt_type` is not supported.
NotImplementedError: If `opt_type` is not implemented.
"""
assert isinstance(config, dict)
opt_type = config['opt_type'].upper()
base_lr = config['base_lr']
base_wd = config.get('base_wd', 0.0)
bias_lr_multiplier = config.get('bias_lr_multiplier', 1.0)
bias_wd_multiplier = config.get('bias_wd_multiplier', 1.0)
if opt_type not in _ALLOWED_OPT_TYPES:
raise ValueError(f'Invalid optimizer type `{opt_type}`!'
f'Allowed types: {_ALLOWED_OPT_TYPES}.')
model_params = []
for param_name, param in model.named_parameters():
param_group = {'params': [param]}
if param.requires_grad:
if 'bias' in param_name:
param_group['lr'] = base_lr * bias_lr_multiplier
param_group['weight_decay'] = base_wd * bias_wd_multiplier
else:
param_group['lr'] = base_lr
param_group['weight_decay'] = base_wd
model_params.append(param_group)
if opt_type == 'SGD':
return torch.optim.SGD(params=model_params,
lr=base_lr,
momentum=config.get('momentum', 0.9),
dampening=config.get('dampening', 0),
weight_decay=base_wd,
nesterov=config.get('nesterov', False))
if opt_type == 'ADAM':
return AdamOptimizer(params=model_params,
lr=base_lr,
betas=config.get('betas', (0.9, 0.999)),
eps=config.get('eps', 1e-8),
weight_decay=base_wd,
amsgrad=config.get('amsgrad', False))
raise NotImplementedError(f'Not implemented optimizer type `{opt_type}`!')
def build_optimizers(opt_config, runner):
"""Builds optimizers for the given runner.
The `opt_config` should be a dictionary, where keys are model names and
each value is the optimizer configuration for a particumar model. All built
optimizers will be saved in `runner.optimizers`, which is also a dictionary.
NOTE: The model names should match the keys of `runner.models`.
Args:
opt_config: The configuration to build the optimizers.
runner: The runner to build the optimizer for.
"""
if not opt_config:
return
assert isinstance(opt_config, dict)
for name, config in opt_config.items():
if not name or not config:
continue
if name in runner.optimizers:
raise AttributeError(f'Optimizer `{name}` has already existed!')
if name not in runner.models:
raise AttributeError(f'Model `{name}` is missing!')
runner.optimizers[name] = build_optimizer(config, runner.models[name])
# We slightly modify the Adam optimizer from `torch.optim`. since there exists
# some discrepancies between the `torch.optim` version and the TensorFlow
# version. The main difference is where to add the `epsilon`.
# TODO: The modified optimizer does not support `amsgrad` any more.
# pylint: disable=line-too-long
# pylint: disable=unneeded-not
# pylint: disable=misplaced-comparison-constant
# pylint: disable=super-with-arguments
class AdamOptimizer(torch.optim.Optimizer):
r"""Implements Adam algorithm.
It has been proposed in `Adam: A Method for Stochastic Optimization`_.
The implementation of the L2 penalty follows changes proposed in
`Decoupled Weight Decay Regularization`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False)
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _Decoupled Weight Decay Regularization:
https://arxiv.org/abs/1711.05101
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, amsgrad=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, amsgrad=amsgrad)
super(AdamOptimizer, self).__init__(params, defaults)
def __setstate__(self, state):
super(AdamOptimizer, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsgrad', False)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
amsgrad = group['amsgrad']
assert not amsgrad
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
# if amsgrad:
# max_exp_avg_sq = state['max_exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
if group['weight_decay'] != 0:
grad = grad.add(p, alpha=group['weight_decay'])
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
# if amsgrad:
# # Maintains the maximum of all 2nd moment running avg. till now
# torch.maximum(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# # Use the max. for normalizing running avg. of gradient
# denom = (max_exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
# else:
# denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
# step_size = group['lr'] / bias_correction1
# p.addcdiv_(exp_avg, denom, value=-step_size)
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
p.addcdiv_(exp_avg, exp_avg_sq.sqrt().add_(group['eps']) , value=-step_size)
return loss
# pylint: enable=line-too-long
# pylint: enable=unneeded-not
# pylint: enable=misplaced-comparison-constant
# pylint: enable=super-with-arguments
|