|
|
|
"""Contains the Inception V3 model. |
|
|
|
This file is mostly borrowed from `torchvision/models/inception.py`. |
|
|
|
Inception model is widely used to compute FID or IS metric for evaluating |
|
generative models. However, the pre-trained models from torchvision is slightly |
|
different from the TensorFlow version. |
|
|
|
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz |
|
|
|
In particular: |
|
|
|
(1) The number of classes in TensorFlow model is 1008 instead of 1000. |
|
(2) The avg_pool() layers in TensorFlow model does not include the padded zero. |
|
(3) The last Inception E Block in TensorFlow model use max_pool() instead of |
|
avg_pool(). |
|
|
|
Hence, to algin the evaluation results with those from TensorFlow |
|
implementation, we modified the inception model to support both versions. Please |
|
use `align_tf` argument to control the version. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import namedtuple |
|
import warnings |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.jit.annotations import Optional |
|
from torch import Tensor |
|
from torchvision.models.utils import load_state_dict_from_url |
|
|
|
|
|
__all__ = ['build_inception_model', 'Inception3', 'inception_v3', 'InceptionOutputs', '_InceptionOutputs'] |
|
|
|
model_urls = { |
|
|
|
'inception_v3_google': 'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth', |
|
|
|
|
|
|
|
'tf_inception_v3': 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' |
|
} |
|
|
|
InceptionOutputs = namedtuple('InceptionOutputs', ['logits', 'aux_logits']) |
|
InceptionOutputs.__annotations__ = {'logits': torch.Tensor, 'aux_logits': Optional[torch.Tensor]} |
|
|
|
|
|
|
|
_InceptionOutputs = InceptionOutputs |
|
|
|
|
|
def build_inception_model(align_tf=True): |
|
"""Builds Inception V3 model. |
|
|
|
This model is particular used for inference, such that `requires_grad` and |
|
`mode` will both be set as `False`. |
|
|
|
Args: |
|
align_tf: Whether to align the implementation with TensorFlow version. (default: True) |
|
|
|
Returns: |
|
A `torch.nn.Module` with pre-trained weight. |
|
""" |
|
if align_tf: |
|
num_classes = 1008 |
|
model_url = model_urls['tf_inception_v3'] |
|
else: |
|
num_classes = 1000 |
|
model_url = model_urls['inception_v3_google'] |
|
model = Inception3(num_classes=num_classes, |
|
aux_logits=False, |
|
transform_input=False, |
|
align_tf=align_tf) |
|
state_dict = load_state_dict_from_url(model_url) |
|
model.load_state_dict(state_dict, strict=False) |
|
model.eval() |
|
for param in model.parameters(): |
|
param.requires_grad = False |
|
return model |
|
|
|
|
|
def inception_v3(pretrained=False, progress=True, **kwargs): |
|
r"""Inception v3 model architecture from |
|
`"Rethinking the Inception Architecture for Computer Vision" <http://arxiv.org/abs/1512.00567>`_. |
|
|
|
.. note:: |
|
**Important**: In contrast to the other models the inception_v3 expects tensors with a size of |
|
N x 3 x 299 x 299, so ensure your images are sized accordingly. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
aux_logits (bool): If True, add an auxiliary branch that can improve training. |
|
Default: *True* |
|
transform_input (bool): If True, preprocesses the input according to the method with which it |
|
was trained on ImageNet. Default: *False* |
|
""" |
|
if pretrained: |
|
if 'transform_input' not in kwargs: |
|
kwargs['transform_input'] = True |
|
if 'aux_logits' in kwargs: |
|
original_aux_logits = kwargs['aux_logits'] |
|
kwargs['aux_logits'] = True |
|
else: |
|
original_aux_logits = True |
|
model = Inception3(**kwargs) |
|
state_dict = load_state_dict_from_url(model_urls['inception_v3_google'], |
|
progress=progress) |
|
model.load_state_dict(state_dict) |
|
if not original_aux_logits: |
|
model.aux_logits = False |
|
del model.AuxLogits |
|
return model |
|
|
|
return Inception3(**kwargs) |
|
|
|
|
|
class Inception3(nn.Module): |
|
|
|
def __init__(self, num_classes=1000, aux_logits=True, transform_input=False, |
|
inception_blocks=None, init_weights=True, align_tf=True): |
|
super(Inception3, self).__init__() |
|
if inception_blocks is None: |
|
inception_blocks = [ |
|
BasicConv2d, InceptionA, InceptionB, InceptionC, |
|
InceptionD, InceptionE, InceptionAux |
|
] |
|
assert len(inception_blocks) == 7 |
|
conv_block = inception_blocks[0] |
|
inception_a = inception_blocks[1] |
|
inception_b = inception_blocks[2] |
|
inception_c = inception_blocks[3] |
|
inception_d = inception_blocks[4] |
|
inception_e = inception_blocks[5] |
|
inception_aux = inception_blocks[6] |
|
|
|
self.aux_logits = aux_logits |
|
self.transform_input = transform_input |
|
self.align_tf = align_tf |
|
self.Conv2d_1a_3x3 = conv_block(3, 32, kernel_size=3, stride=2) |
|
self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3) |
|
self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1) |
|
self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1) |
|
self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3) |
|
self.Mixed_5b = inception_a(192, pool_features=32, align_tf=self.align_tf) |
|
self.Mixed_5c = inception_a(256, pool_features=64, align_tf=self.align_tf) |
|
self.Mixed_5d = inception_a(288, pool_features=64, align_tf=self.align_tf) |
|
self.Mixed_6a = inception_b(288) |
|
self.Mixed_6b = inception_c(768, channels_7x7=128, align_tf=self.align_tf) |
|
self.Mixed_6c = inception_c(768, channels_7x7=160, align_tf=self.align_tf) |
|
self.Mixed_6d = inception_c(768, channels_7x7=160, align_tf=self.align_tf) |
|
self.Mixed_6e = inception_c(768, channels_7x7=192, align_tf=self.align_tf) |
|
if aux_logits: |
|
self.AuxLogits = inception_aux(768, num_classes) |
|
self.Mixed_7a = inception_d(768) |
|
self.Mixed_7b = inception_e(1280, align_tf=self.align_tf) |
|
self.Mixed_7c = inception_e(2048, use_max_pool=self.align_tf) |
|
self.fc = nn.Linear(2048, num_classes) |
|
if init_weights: |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): |
|
import scipy.stats as stats |
|
stddev = m.stddev if hasattr(m, 'stddev') else 0.1 |
|
X = stats.truncnorm(-2, 2, scale=stddev) |
|
values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype) |
|
values = values.view(m.weight.size()) |
|
with torch.no_grad(): |
|
m.weight.copy_(values) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def _transform_input(self, x): |
|
if self.transform_input: |
|
x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5 |
|
x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5 |
|
x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5 |
|
x = torch.cat((x_ch0, x_ch1, x_ch2), 1) |
|
return x |
|
|
|
def _forward(self, x, output_logits=False): |
|
|
|
if x.shape[2] != 299 or x.shape[3] != 299: |
|
x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=False) |
|
|
|
|
|
x = self.Conv2d_1a_3x3(x) |
|
|
|
x = self.Conv2d_2a_3x3(x) |
|
|
|
x = self.Conv2d_2b_3x3(x) |
|
|
|
x = F.max_pool2d(x, kernel_size=3, stride=2) |
|
|
|
x = self.Conv2d_3b_1x1(x) |
|
|
|
x = self.Conv2d_4a_3x3(x) |
|
|
|
x = F.max_pool2d(x, kernel_size=3, stride=2) |
|
|
|
x = self.Mixed_5b(x) |
|
|
|
x = self.Mixed_5c(x) |
|
|
|
x = self.Mixed_5d(x) |
|
|
|
x = self.Mixed_6a(x) |
|
|
|
x = self.Mixed_6b(x) |
|
|
|
x = self.Mixed_6c(x) |
|
|
|
x = self.Mixed_6d(x) |
|
|
|
x = self.Mixed_6e(x) |
|
|
|
aux_defined = self.training and self.aux_logits |
|
if aux_defined: |
|
aux = self.AuxLogits(x) |
|
else: |
|
aux = None |
|
|
|
x = self.Mixed_7a(x) |
|
|
|
x = self.Mixed_7b(x) |
|
|
|
x = self.Mixed_7c(x) |
|
|
|
|
|
x = F.adaptive_avg_pool2d(x, (1, 1)) |
|
|
|
x = F.dropout(x, training=self.training) |
|
|
|
x = torch.flatten(x, 1) |
|
|
|
if output_logits: |
|
x = self.fc(x) |
|
|
|
return x, aux |
|
|
|
@torch.jit.unused |
|
def eager_outputs(self, x, aux): |
|
|
|
if self.training and self.aux_logits: |
|
return InceptionOutputs(x, aux) |
|
else: |
|
return x |
|
|
|
def forward(self, x, output_logits=False): |
|
x = self._transform_input(x) |
|
x, aux = self._forward(x, output_logits) |
|
aux_defined = self.training and self.aux_logits |
|
if torch.jit.is_scripting(): |
|
if not aux_defined: |
|
warnings.warn("Scripted Inception3 always returns Inception3 Tuple") |
|
return InceptionOutputs(x, aux) |
|
else: |
|
return self.eager_outputs(x, aux) |
|
|
|
|
|
class InceptionA(nn.Module): |
|
|
|
def __init__(self, in_channels, pool_features, conv_block=None, align_tf=False): |
|
super(InceptionA, self).__init__() |
|
if conv_block is None: |
|
conv_block = BasicConv2d |
|
self.branch1x1 = conv_block(in_channels, 64, kernel_size=1) |
|
|
|
self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1) |
|
self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2) |
|
|
|
self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1) |
|
self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1) |
|
self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1) |
|
|
|
self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1) |
|
self.pool_include_padding = not align_tf |
|
|
|
def _forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch5x5 = self.branch5x5_1(x) |
|
branch5x5 = self.branch5x5_2(branch5x5) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) |
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, |
|
count_include_pad=self.pool_include_padding) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] |
|
return outputs |
|
|
|
def forward(self, x): |
|
outputs = self._forward(x) |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class InceptionB(nn.Module): |
|
|
|
def __init__(self, in_channels, conv_block=None): |
|
super(InceptionB, self).__init__() |
|
if conv_block is None: |
|
conv_block = BasicConv2d |
|
self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2) |
|
|
|
self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1) |
|
self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1) |
|
self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2) |
|
|
|
def _forward(self, x): |
|
branch3x3 = self.branch3x3(x) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) |
|
|
|
branch_pool = F.max_pool2d(x, kernel_size=3, stride=2) |
|
|
|
outputs = [branch3x3, branch3x3dbl, branch_pool] |
|
return outputs |
|
|
|
def forward(self, x): |
|
outputs = self._forward(x) |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class InceptionC(nn.Module): |
|
|
|
def __init__(self, in_channels, channels_7x7, conv_block=None, align_tf=False): |
|
super(InceptionC, self).__init__() |
|
if conv_block is None: |
|
conv_block = BasicConv2d |
|
self.branch1x1 = conv_block(in_channels, 192, kernel_size=1) |
|
|
|
c7 = channels_7x7 |
|
self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1) |
|
self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3)) |
|
self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0)) |
|
|
|
self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1) |
|
self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0)) |
|
self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3)) |
|
self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0)) |
|
self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3)) |
|
|
|
self.branch_pool = conv_block(in_channels, 192, kernel_size=1) |
|
self.pool_include_padding = not align_tf |
|
|
|
def _forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch7x7 = self.branch7x7_1(x) |
|
branch7x7 = self.branch7x7_2(branch7x7) |
|
branch7x7 = self.branch7x7_3(branch7x7) |
|
|
|
branch7x7dbl = self.branch7x7dbl_1(x) |
|
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) |
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, |
|
count_include_pad=self.pool_include_padding) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] |
|
return outputs |
|
|
|
def forward(self, x): |
|
outputs = self._forward(x) |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class InceptionD(nn.Module): |
|
|
|
def __init__(self, in_channels, conv_block=None): |
|
super(InceptionD, self).__init__() |
|
if conv_block is None: |
|
conv_block = BasicConv2d |
|
self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1) |
|
self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2) |
|
|
|
self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1) |
|
self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3)) |
|
self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0)) |
|
self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2) |
|
|
|
def _forward(self, x): |
|
branch3x3 = self.branch3x3_1(x) |
|
branch3x3 = self.branch3x3_2(branch3x3) |
|
|
|
branch7x7x3 = self.branch7x7x3_1(x) |
|
branch7x7x3 = self.branch7x7x3_2(branch7x7x3) |
|
branch7x7x3 = self.branch7x7x3_3(branch7x7x3) |
|
branch7x7x3 = self.branch7x7x3_4(branch7x7x3) |
|
|
|
branch_pool = F.max_pool2d(x, kernel_size=3, stride=2) |
|
outputs = [branch3x3, branch7x7x3, branch_pool] |
|
return outputs |
|
|
|
def forward(self, x): |
|
outputs = self._forward(x) |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class InceptionE(nn.Module): |
|
|
|
def __init__(self, in_channels, conv_block=None, align_tf=False, use_max_pool=False): |
|
super(InceptionE, self).__init__() |
|
if conv_block is None: |
|
conv_block = BasicConv2d |
|
self.branch1x1 = conv_block(in_channels, 320, kernel_size=1) |
|
|
|
self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1) |
|
self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1)) |
|
self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0)) |
|
|
|
self.branch3x3dbl_1 = conv_block(in_channels, 448, kernel_size=1) |
|
self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1) |
|
self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1)) |
|
self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0)) |
|
|
|
self.branch_pool = conv_block(in_channels, 192, kernel_size=1) |
|
self.pool_include_padding = not align_tf |
|
self.use_max_pool = use_max_pool |
|
|
|
def _forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch3x3 = self.branch3x3_1(x) |
|
branch3x3 = [ |
|
self.branch3x3_2a(branch3x3), |
|
self.branch3x3_2b(branch3x3), |
|
] |
|
branch3x3 = torch.cat(branch3x3, 1) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = [ |
|
self.branch3x3dbl_3a(branch3x3dbl), |
|
self.branch3x3dbl_3b(branch3x3dbl), |
|
] |
|
branch3x3dbl = torch.cat(branch3x3dbl, 1) |
|
|
|
if self.use_max_pool: |
|
branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1) |
|
else: |
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, |
|
count_include_pad=self.pool_include_padding) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] |
|
return outputs |
|
|
|
def forward(self, x): |
|
outputs = self._forward(x) |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class InceptionAux(nn.Module): |
|
|
|
def __init__(self, in_channels, num_classes, conv_block=None): |
|
super(InceptionAux, self).__init__() |
|
if conv_block is None: |
|
conv_block = BasicConv2d |
|
self.conv0 = conv_block(in_channels, 128, kernel_size=1) |
|
self.conv1 = conv_block(128, 768, kernel_size=5) |
|
self.conv1.stddev = 0.01 |
|
self.fc = nn.Linear(768, num_classes) |
|
self.fc.stddev = 0.001 |
|
|
|
def forward(self, x): |
|
|
|
x = F.avg_pool2d(x, kernel_size=5, stride=3) |
|
|
|
x = self.conv0(x) |
|
|
|
x = self.conv1(x) |
|
|
|
|
|
x = F.adaptive_avg_pool2d(x, (1, 1)) |
|
|
|
x = torch.flatten(x, 1) |
|
|
|
x = self.fc(x) |
|
|
|
return x |
|
|
|
|
|
class BasicConv2d(nn.Module): |
|
|
|
def __init__(self, in_channels, out_channels, **kwargs): |
|
super(BasicConv2d, self).__init__() |
|
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs) |
|
self.bn = nn.BatchNorm2d(out_channels, eps=0.001) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
return F.relu(x, inplace=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|