File size: 19,947 Bytes
8c212a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
# python3.7
"""Contains the Inception V3 model.

This file is mostly borrowed from `torchvision/models/inception.py`.

Inception model is widely used to compute FID or IS metric for evaluating
generative models. However, the pre-trained models from torchvision is slightly
different from the TensorFlow version.

http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz

In particular:

(1) The number of classes in TensorFlow model is 1008 instead of 1000.
(2) The avg_pool() layers in TensorFlow model does not include the padded zero.
(3) The last Inception E Block in TensorFlow model use max_pool() instead of
    avg_pool().

Hence, to algin the evaluation results with those from TensorFlow
implementation, we modified the inception model to support both versions. Please
use `align_tf` argument to control the version.
"""

# pylint: disable=line-too-long
# pylint: disable=missing-function-docstring
# pylint: disable=missing-class-docstring
# pylint: disable=super-with-arguments
# pylint: disable=consider-merging-isinstance
# pylint: disable=import-outside-toplevel
# pylint: disable=no-else-return

from collections import namedtuple
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.jit.annotations import Optional
from torch import Tensor
from torchvision.models.utils import load_state_dict_from_url


__all__ = ['build_inception_model', 'Inception3', 'inception_v3', 'InceptionOutputs', '_InceptionOutputs']

model_urls = {
    # Inception v3 ported from TensorFlow
    'inception_v3_google': 'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth',

    # Inception v3 ported from http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
    # This model is provided by https://github.com/mseitzer/pytorch-fid
    'tf_inception_v3': 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth'
}

InceptionOutputs = namedtuple('InceptionOutputs', ['logits', 'aux_logits'])
InceptionOutputs.__annotations__ = {'logits': torch.Tensor, 'aux_logits': Optional[torch.Tensor]}

# Script annotations failed with _GoogleNetOutputs = namedtuple ...
# _InceptionOutputs set here for backwards compat
_InceptionOutputs = InceptionOutputs


def build_inception_model(align_tf=True):
    """Builds Inception V3 model.

    This model is particular used for inference, such that `requires_grad` and
    `mode` will both be set as `False`.

    Args:
        align_tf: Whether to align the implementation with TensorFlow version. (default: True)

    Returns:
        A `torch.nn.Module` with pre-trained weight.
    """
    if align_tf:
        num_classes = 1008
        model_url = model_urls['tf_inception_v3']
    else:
        num_classes = 1000
        model_url = model_urls['inception_v3_google']
    model = Inception3(num_classes=num_classes,
                       aux_logits=False,
                       transform_input=False,
                       align_tf=align_tf)
    state_dict = load_state_dict_from_url(model_url)
    model.load_state_dict(state_dict, strict=False)
    model.eval()
    for param in model.parameters():
        param.requires_grad = False
    return model


def inception_v3(pretrained=False, progress=True, **kwargs):
    r"""Inception v3 model architecture from
    `"Rethinking the Inception Architecture for Computer Vision" <http://arxiv.org/abs/1512.00567>`_.

    .. note::
        **Important**: In contrast to the other models the inception_v3 expects tensors with a size of
        N x 3 x 299 x 299, so ensure your images are sized accordingly.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
        aux_logits (bool): If True, add an auxiliary branch that can improve training.
            Default: *True*
        transform_input (bool): If True, preprocesses the input according to the method with which it
            was trained on ImageNet. Default: *False*
    """
    if pretrained:
        if 'transform_input' not in kwargs:
            kwargs['transform_input'] = True
        if 'aux_logits' in kwargs:
            original_aux_logits = kwargs['aux_logits']
            kwargs['aux_logits'] = True
        else:
            original_aux_logits = True
        model = Inception3(**kwargs)
        state_dict = load_state_dict_from_url(model_urls['inception_v3_google'],
                                              progress=progress)
        model.load_state_dict(state_dict)
        if not original_aux_logits:
            model.aux_logits = False
            del model.AuxLogits
        return model

    return Inception3(**kwargs)


class Inception3(nn.Module):

    def __init__(self, num_classes=1000, aux_logits=True, transform_input=False,
                 inception_blocks=None, init_weights=True, align_tf=True):
        super(Inception3, self).__init__()
        if inception_blocks is None:
            inception_blocks = [
                BasicConv2d, InceptionA, InceptionB, InceptionC,
                InceptionD, InceptionE, InceptionAux
            ]
        assert len(inception_blocks) == 7
        conv_block = inception_blocks[0]
        inception_a = inception_blocks[1]
        inception_b = inception_blocks[2]
        inception_c = inception_blocks[3]
        inception_d = inception_blocks[4]
        inception_e = inception_blocks[5]
        inception_aux = inception_blocks[6]

        self.aux_logits = aux_logits
        self.transform_input = transform_input
        self.align_tf = align_tf
        self.Conv2d_1a_3x3 = conv_block(3, 32, kernel_size=3, stride=2)
        self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3)
        self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1)
        self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1)
        self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3)
        self.Mixed_5b = inception_a(192, pool_features=32, align_tf=self.align_tf)
        self.Mixed_5c = inception_a(256, pool_features=64, align_tf=self.align_tf)
        self.Mixed_5d = inception_a(288, pool_features=64, align_tf=self.align_tf)
        self.Mixed_6a = inception_b(288)
        self.Mixed_6b = inception_c(768, channels_7x7=128, align_tf=self.align_tf)
        self.Mixed_6c = inception_c(768, channels_7x7=160, align_tf=self.align_tf)
        self.Mixed_6d = inception_c(768, channels_7x7=160, align_tf=self.align_tf)
        self.Mixed_6e = inception_c(768, channels_7x7=192, align_tf=self.align_tf)
        if aux_logits:
            self.AuxLogits = inception_aux(768, num_classes)
        self.Mixed_7a = inception_d(768)
        self.Mixed_7b = inception_e(1280, align_tf=self.align_tf)
        self.Mixed_7c = inception_e(2048, use_max_pool=self.align_tf)
        self.fc = nn.Linear(2048, num_classes)
        if init_weights:
            for m in self.modules():
                if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                    import scipy.stats as stats
                    stddev = m.stddev if hasattr(m, 'stddev') else 0.1
                    X = stats.truncnorm(-2, 2, scale=stddev)
                    values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype)
                    values = values.view(m.weight.size())
                    with torch.no_grad():
                        m.weight.copy_(values)
                elif isinstance(m, nn.BatchNorm2d):
                    nn.init.constant_(m.weight, 1)
                    nn.init.constant_(m.bias, 0)

    def _transform_input(self, x):
        if self.transform_input:
            x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
            x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
            x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
            x = torch.cat((x_ch0, x_ch1, x_ch2), 1)
        return x

    def _forward(self, x, output_logits=False):
        # Upsample if necessary
        if x.shape[2] != 299 or x.shape[3] != 299:
            x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=False)

        # N x 3 x 299 x 299
        x = self.Conv2d_1a_3x3(x)
        # N x 32 x 149 x 149
        x = self.Conv2d_2a_3x3(x)
        # N x 32 x 147 x 147
        x = self.Conv2d_2b_3x3(x)
        # N x 64 x 147 x 147
        x = F.max_pool2d(x, kernel_size=3, stride=2)
        # N x 64 x 73 x 73
        x = self.Conv2d_3b_1x1(x)
        # N x 80 x 73 x 73
        x = self.Conv2d_4a_3x3(x)
        # N x 192 x 71 x 71
        x = F.max_pool2d(x, kernel_size=3, stride=2)
        # N x 192 x 35 x 35
        x = self.Mixed_5b(x)
        # N x 256 x 35 x 35
        x = self.Mixed_5c(x)
        # N x 288 x 35 x 35
        x = self.Mixed_5d(x)
        # N x 288 x 35 x 35
        x = self.Mixed_6a(x)
        # N x 768 x 17 x 17
        x = self.Mixed_6b(x)
        # N x 768 x 17 x 17
        x = self.Mixed_6c(x)
        # N x 768 x 17 x 17
        x = self.Mixed_6d(x)
        # N x 768 x 17 x 17
        x = self.Mixed_6e(x)
        # N x 768 x 17 x 17
        aux_defined = self.training and self.aux_logits
        if aux_defined:
            aux = self.AuxLogits(x)
        else:
            aux = None
        # N x 768 x 17 x 17
        x = self.Mixed_7a(x)
        # N x 1280 x 8 x 8
        x = self.Mixed_7b(x)
        # N x 2048 x 8 x 8
        x = self.Mixed_7c(x)
        # N x 2048 x 8 x 8
        # Adaptive average pooling
        x = F.adaptive_avg_pool2d(x, (1, 1))
        # N x 2048 x 1 x 1
        x = F.dropout(x, training=self.training)
        # N x 2048 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 2048
        if output_logits:
            x = self.fc(x)
            # N x 1000 (num_classes)
        return x, aux

    @torch.jit.unused
    def eager_outputs(self, x, aux):
        # type: (Tensor, Optional[Tensor]) -> InceptionOutputs
        if self.training and self.aux_logits:
            return InceptionOutputs(x, aux)
        else:
            return x

    def forward(self, x, output_logits=False):
        x = self._transform_input(x)
        x, aux = self._forward(x, output_logits)
        aux_defined = self.training and self.aux_logits
        if torch.jit.is_scripting():
            if not aux_defined:
                warnings.warn("Scripted Inception3 always returns Inception3 Tuple")
            return InceptionOutputs(x, aux)
        else:
            return self.eager_outputs(x, aux)


class InceptionA(nn.Module):

    def __init__(self, in_channels, pool_features, conv_block=None, align_tf=False):
        super(InceptionA, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1x1 = conv_block(in_channels, 64, kernel_size=1)

        self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1)
        self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2)

        self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
        self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
        self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1)

        self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1)
        self.pool_include_padding = not align_tf

    def _forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                                   count_include_pad=self.pool_include_padding)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
        return outputs

    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)


class InceptionB(nn.Module):

    def __init__(self, in_channels, conv_block=None):
        super(InceptionB, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2)

        self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
        self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
        self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2)

    def _forward(self, x):
        branch3x3 = self.branch3x3(x)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)

        outputs = [branch3x3, branch3x3dbl, branch_pool]
        return outputs

    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)


class InceptionC(nn.Module):

    def __init__(self, in_channels, channels_7x7, conv_block=None, align_tf=False):
        super(InceptionC, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1x1 = conv_block(in_channels, 192, kernel_size=1)

        c7 = channels_7x7
        self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1)
        self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0))

        self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1)
        self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3))

        self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
        self.pool_include_padding = not align_tf

    def _forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)

        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                                   count_include_pad=self.pool_include_padding)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
        return outputs

    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)


class InceptionD(nn.Module):

    def __init__(self, in_channels, conv_block=None):
        super(InceptionD, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1)
        self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2)

        self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1)
        self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2)

    def _forward(self, x):
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)

        branch7x7x3 = self.branch7x7x3_1(x)
        branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_4(branch7x7x3)

        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
        outputs = [branch3x3, branch7x7x3, branch_pool]
        return outputs

    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)


class InceptionE(nn.Module):

    def __init__(self, in_channels, conv_block=None, align_tf=False, use_max_pool=False):
        super(InceptionE, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1x1 = conv_block(in_channels, 320, kernel_size=1)

        self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1)
        self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
        self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))

        self.branch3x3dbl_1 = conv_block(in_channels, 448, kernel_size=1)
        self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1)
        self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
        self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))

        self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
        self.pool_include_padding = not align_tf
        self.use_max_pool = use_max_pool

    def _forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = torch.cat(branch3x3, 1)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = torch.cat(branch3x3dbl, 1)

        if self.use_max_pool:
            branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
        else:
            branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                                       count_include_pad=self.pool_include_padding)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
        return outputs

    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)


class InceptionAux(nn.Module):

    def __init__(self, in_channels, num_classes, conv_block=None):
        super(InceptionAux, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.conv0 = conv_block(in_channels, 128, kernel_size=1)
        self.conv1 = conv_block(128, 768, kernel_size=5)
        self.conv1.stddev = 0.01
        self.fc = nn.Linear(768, num_classes)
        self.fc.stddev = 0.001

    def forward(self, x):
        # N x 768 x 17 x 17
        x = F.avg_pool2d(x, kernel_size=5, stride=3)
        # N x 768 x 5 x 5
        x = self.conv0(x)
        # N x 128 x 5 x 5
        x = self.conv1(x)
        # N x 768 x 1 x 1
        # Adaptive average pooling
        x = F.adaptive_avg_pool2d(x, (1, 1))
        # N x 768 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 768
        x = self.fc(x)
        # N x 1000
        return x


class BasicConv2d(nn.Module):

    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)

# pylint: enable=line-too-long
# pylint: enable=missing-function-docstring
# pylint: enable=missing-class-docstring
# pylint: enable=super-with-arguments
# pylint: enable=consider-merging-isinstance
# pylint: enable=import-outside-toplevel
# pylint: enable=no-else-return