File size: 6,176 Bytes
3dd9f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8d946e
3dd9f2f
 
 
 
 
 
25f70a1
3dd9f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c587b1
3dd9f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ac327
3dd9f2f
 
13ac327
f17b51d
13ac327
83f046f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6d8cf3
13ac327
3dd9f2f
 
 
 
 
 
 
ecf2a21
3dd9f2f
 
13ac327
 
f17b51d
d6fba9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dd9f2f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import pandas as pd
from surprise import Dataset, Reader

laptop_df = pd.read_csv('laptop_data.csv')
user_df = pd.read_csv('user_data.csv')  

laptop_df = laptop_df.fillna(0)
user_df = user_df.fillna(0)

# Create a Surprise Dataset
reader = Reader(rating_scale=(1, 5))
data = Dataset.load_from_df(user_df[['User_ID', 'Laptop_ID', 'Rating']], reader)

from surprise.model_selection import train_test_split
from surprise import SVD
from surprise import accuracy

# Train-test split
trainset, testset = train_test_split(data, test_size=0.2, random_state=42)

# train model
model = SVD()
model.fit(trainset)

def recommend_laptops(age=None, category=None, gender=None, user_id=None, num_recommendations=5):
    if user_id is not None:
        # Existing user
        user_ratings = user_df[user_df['User_ID'] == user_id]
        user_unrated_laptops = laptop_df[~laptop_df['Laptop_ID'].isin(user_ratings['Laptop_ID'])]
        user_unrated_laptops['Predicted_Rating'] = user_unrated_laptops['Laptop_ID'].apply(lambda x: model.predict(user_id, x).est)
        recommendations = user_unrated_laptops.sort_values(by='Predicted_Rating', ascending=False).head(num_recommendations)
    else:
        # New user
        new_user_data = pd.DataFrame({
            'User_ID': [10002],  
            'Age': [age],
            'Category': [category],
            'Gender': [gender]
        })
        new_user_data = new_user_data.merge(laptop_df, how='cross')
        new_user_data['Predicted_Rating'] = new_user_data.apply(lambda row: model.predict(999, row['Laptop_ID']).est, axis=1)
        recommendations = new_user_data.sort_values(by='Predicted_Rating', ascending=False).head(num_recommendations)

    return recommendations


import streamlit as st

# Streamlit app
st.title("Laptop Recommendation System")

# User choice: New or Existing user
user_type = st.radio("Are you a new user or an existing user?", ('New User', 'Existing User'))

if user_type == 'New User':
    # User input for new users
    new_user_age = st.slider("Age:", min_value=12, max_value=89, value=25)
    new_user_category = st.selectbox("What best describes you:", ['Student', 'Professor', 'Banker', 'Businessman', 'Programmer'])
    new_user_gender = st.radio("Gender:", ['Male', 'Female'])

# Button to get recommendations for new users
    if st.button("Get Recommendations"):
        recommendations = recommend_laptops(age=new_user_age, category=new_user_category, gender=new_user_gender)
        st.subheader("Top 5 Recommended Laptops:")
        for i, row in recommendations.iterrows():
            st.subheader(f"{i + 1}. {row['name']} - Price: ₹{row['Price (in Indian Rupees)']}")
            st.markdown(f"**Specifications:**\n"
                        f"Type: {row['Type']}\n"
                        f"Dedicated Graphic Memory Capacity: {row['Dedicated Graphic Memory Capacity']}\n"
                        f"Processor Brand: {row['Processor Brand']}\n"
                        f"SSD: {row['SSD']}\n"
                        f"RAM (in GB): {row['RAM (in GB)']}\n"
                        f"Expandable Memory: {row['Expandable Memory']}\n"
                        f"Operating System: {row['Operating System']}\n"
                        f"Touchscreen: {row['Touchscreen']}\n"
                        f"Screen Size (in inch): {row['Screen Size (in inch)']}\n"
                        f"Weight (in kg): {row['Weight (in kg)']}\n"
                        f"Refresh Rate: {row['Refresh Rate']}\n"
                        f"Screen Resolution: {row['screen_resolution']}\n"
                        f"Company: {row['company']}\n"
                        f"Storage: {row['Storage']}\n"
                        f"Processor Name: {row['Processor name']}\n"
                        f"CPU Ranking: {row['CPU_ranking']}\n"
                        f"Battery Backup: {row['battery_backup']}\n"
                        f"GPU Name: {row['gpu name ']}\n"
                        f"GPU Benchmark: {row['gpu_benchmark']}\n")
            st.markdown(f"[Buy Here]({row['link']})")

# User input for existing users
elif user_type == 'Existing User':
    # User input for existing users
    existing_user_id = st.text_input("Enter your user ID:", "")

    # Button to get recommendations
    if st.button("Get Laptop Recommendations"):
        if existing_user_id:
            recommendations = recommend_laptops(user_id=int(existing_user_id))
            st.subheader(f"Top 5 Recommended Laptops for User {existing_user_id}:")
            for i, row in recommendations.iterrows():
                st.subheader(f"{i + 1}. {row['name']} - Price: ₹{row['Price (in Indian Rupees)']}")
                st.markdown(f"**Specifications:**\n"
                            f"Type: {row['Type']}\n"
                            f"Dedicated Graphic Memory Capacity: {row['Dedicated Graphic Memory Capacity']}\n"
                            f"Processor Brand: {row['Processor Brand']}\n"
                            f"SSD: {row['SSD']}\n"
                            f"RAM (in GB): {row['RAM (in GB)']}\n"
                            f"Expandable Memory: {row['Expandable Memory']}\n"
                            f"Operating System: {row['Operating System']}\n"
                            f"Touchscreen: {row['Touchscreen']}\n"
                            f"Screen Size (in inch): {row['Screen Size (in inch)']}\n"
                            f"Weight (in kg): {row['Weight (in kg)']}\n"
                            f"Refresh Rate: {row['Refresh Rate']}\n"
                            f"Screen Resolution: {row['screen_resolution']}\n"
                            f"Company: {row['company']}\n"
                            f"Storage: {row['Storage']}\n"
                            f"Processor Name: {row['Processor name']}\n"
                            f"CPU Ranking: {row['CPU_ranking']}\n"
                            f"Battery Backup: {row['battery_backup']}\n"
                            f"GPU Name: {row['gpu name ']}\n"
                            f"GPU Benchmark: {row['gpu_benchmark']}\n")
                st.markdown(f"[Buy Here]({row['link']})")
        else:
            st.warning("Please enter a valid user ID.")