dataprincess commited on
Commit
13ac327
·
verified ·
1 Parent(s): b8d946e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -4
app.py CHANGED
@@ -59,10 +59,32 @@ if user_type == 'New User':
59
  new_user_gender = st.radio("Gender:", ['Male', 'Female'])
60
 
61
  # Button to get recommendations for new users
62
- if st.button("Get Laptop Recommendations"):
63
  recommendations = recommend_laptops(age=new_user_age, category=new_user_category, gender=new_user_gender)
64
  st.subheader("Top 5 Recommended Laptops:")
65
- st.dataframe(recommendations[['Laptop_ID', 'Laptop_Name', 'Predicted_Rating']], index=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
  # User input for existing users
68
  elif user_type == 'Existing User':
@@ -73,7 +95,29 @@ elif user_type == 'Existing User':
73
  if st.button("Get aptop Recommendations"):
74
  if existing_user_id:
75
  recommendations = recommend_laptops(user_id=int(existing_user_id))
76
- st.subheader(f"Top 5 Recommended Laptops for User ID {existing_user_id}:")
77
- st.dataframe(recommendations[['Laptop_ID', 'Laptop_Name', 'Predicted_Rating']], index=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  else:
79
  st.warning("Please enter a valid user ID.")
 
59
  new_user_gender = st.radio("Gender:", ['Male', 'Female'])
60
 
61
  # Button to get recommendations for new users
62
+ if st.button("Get Recommendations"):
63
  recommendations = recommend_laptops(age=new_user_age, category=new_user_category, gender=new_user_gender)
64
  st.subheader("Top 5 Recommended Laptops:")
65
+ for i, row in recommendations.iterrows():
66
+ st.subheader(f"{i + 1}. {row['Laptop_Name']} - Price: ₹{row['Price (in Indian Rupees)']}")
67
+ st.markdown(f"**Specifications:**\n"
68
+ f"Type: {row['Type']}\n"
69
+ f"Dedicated Graphic Memory Capacity: {row['Dedicated Graphic Memory Capacity']}\n"
70
+ f"Processor Brand: {row['Processor Brand']}\n"
71
+ f"SSD: {row['SSD']}\n"
72
+ f"RAM (in GB): {row['RAM (in GB)']}\n"
73
+ f"Expandable Memory: {row['Expandable Memory']}\n"
74
+ f"Operating System: {row['Operating System']}\n"
75
+ f"Touchscreen: {row['Touchscreen']}\n"
76
+ f"Screen Size (in inch): {row['Screen Size (in inch)']}\n"
77
+ f"Weight (in kg): {row['Weight (in kg)']}\n"
78
+ f"Refresh Rate: {row['Refresh Rate']}\n"
79
+ f"Screen Resolution: {row['screen_resolution']}\n"
80
+ f"Company: {row['company']}\n"
81
+ f"Storage: {row['Storage']}\n"
82
+ f"Processor Name: {row['Processor name']}\n"
83
+ f"CPU Ranking: {row['CPU_ranking']}\n"
84
+ f"Battery Backup: {row['battery_backup']}\n"
85
+ f"GPU Name: {row['gpu name ']}\n"
86
+ f"GPU Benchmark: {row['gpu_benchmark']}\n"
87
+ st.markdown(f"[Buy Here]({row['link']})")
88
 
89
  # User input for existing users
90
  elif user_type == 'Existing User':
 
95
  if st.button("Get aptop Recommendations"):
96
  if existing_user_id:
97
  recommendations = recommend_laptops(user_id=int(existing_user_id))
98
+ st.subheader(f"Top 5 Recommended Laptops for User {existing_user_id}:")
99
+ for i, row in recommendations.iterrows():
100
+ st.subheader(f"{i + 1}. {row['Laptop_Name']} - Price: ₹{row['Price (in Indian Rupees)']}")
101
+ st.markdown(f"**Specifications:**\n"
102
+ f"Type: {row['Type']}\n"
103
+ f"Dedicated Graphic Memory Capacity: {row['Dedicated Graphic Memory Capacity']}\n"
104
+ f"Processor Brand: {row['Processor Brand']}\n"
105
+ f"SSD: {row['SSD']}\n"
106
+ f"RAM (in GB): {row['RAM (in GB)']}\n"
107
+ f"Expandable Memory: {row['Expandable Memory']}\n"
108
+ f"Operating System: {row['Operating System']}\n"
109
+ f"Touchscreen: {row['Touchscreen']}\n"
110
+ f"Screen Size (in inch): {row['Screen Size (in inch)']}\n"
111
+ f"Weight (in kg): {row['Weight (in kg)']}\n"
112
+ f"Refresh Rate: {row['Refresh Rate']}\n"
113
+ f"Screen Resolution: {row['screen_resolution']}\n"
114
+ f"Company: {row['company']}\n"
115
+ f"Storage: {row['Storage']}\n"
116
+ f"Processor Name: {row['Processor name']}\n"
117
+ f"CPU Ranking: {row['CPU_ranking']}\n"
118
+ f"Battery Backup: {row['battery_backup']}\n"
119
+ f"GPU Name: {row['gpu name ']}\n"
120
+ f"GPU Benchmark: {row['gpu_benchmark']}\n"
121
+ st.markdown(f"[Buy Here]({row['link']})")
122
  else:
123
  st.warning("Please enter a valid user ID.")