Spaces:
Sleeping
Sleeping
regex
Browse files
app.py
CHANGED
@@ -9,8 +9,7 @@ from tqdm.auto import tqdm
|
|
9 |
import streamlit as st
|
10 |
import re
|
11 |
|
12 |
-
|
13 |
-
# Constants (hardcoded)
|
14 |
FILE_PATH = "anjibot_chunks.json"
|
15 |
BATCH_SIZE = 384
|
16 |
INDEX_NAME = "groq-llama-3-rag"
|
@@ -55,44 +54,42 @@ for i in tqdm(range(0, len(data['id']), BATCH_SIZE)):
|
|
55 |
index.upsert(vectors=to_upsert)
|
56 |
|
57 |
def extract_course_code(text) -> list[str]:
|
|
|
58 |
pattern = r'\b(?:geds?|stats?|maths?|cosc|seng|itgy)\s*\d{3}\b'
|
59 |
match = re.findall(pattern, text, re.IGNORECASE)
|
60 |
return match if match else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
while True:
|
69 |
xq = encoder.encode(query)
|
70 |
-
res = index.query(vector=xq.tolist(), top_k=
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
if queried_course_codes:
|
81 |
-
for course_code in queried_course_codes:
|
82 |
-
if course_code in content:
|
83 |
-
relevant_docs.append(content)
|
84 |
-
break
|
85 |
-
|
86 |
-
if relevant_docs:
|
87 |
-
break
|
88 |
-
|
89 |
-
i += batch_size
|
90 |
-
|
91 |
-
if relevant_docs:
|
92 |
-
return relevant_docs
|
93 |
-
else:
|
94 |
-
return ["No exact match found for the course code, even after searching with a higher similarity score."]
|
95 |
-
|
96 |
|
97 |
def get_response(query: str, docs: list[str]) -> str:
|
98 |
system_message = (
|
@@ -115,8 +112,6 @@ def get_response(query: str, docs: list[str]) -> str:
|
|
115 |
)
|
116 |
return chat_response.choices[0].message.content
|
117 |
|
118 |
-
|
119 |
-
|
120 |
def handle_query(user_query: str):
|
121 |
|
122 |
# Get relevant documents
|
|
|
9 |
import streamlit as st
|
10 |
import re
|
11 |
|
12 |
+
# Variables
|
|
|
13 |
FILE_PATH = "anjibot_chunks.json"
|
14 |
BATCH_SIZE = 384
|
15 |
INDEX_NAME = "groq-llama-3-rag"
|
|
|
54 |
index.upsert(vectors=to_upsert)
|
55 |
|
56 |
def extract_course_code(text) -> list[str]:
|
57 |
+
# Improved pattern with correct case insensitivity and spacing allowance
|
58 |
pattern = r'\b(?:geds?|stats?|maths?|cosc|seng|itgy)\s*\d{3}\b'
|
59 |
match = re.findall(pattern, text, re.IGNORECASE)
|
60 |
return match if match else None
|
61 |
+
|
62 |
+
def get_docs(query: str, top_k: int) -> list[str]:
|
63 |
+
# Extract course code(s) from the query
|
64 |
+
course_code = extract_course_code(query)
|
65 |
+
exact_matches = []
|
66 |
+
|
67 |
+
if course_code:
|
68 |
+
# Normalize course_code to lowercase for case-insensitive matching
|
69 |
+
course_code = [code.lower() for code in course_code]
|
70 |
+
|
71 |
+
# Check for exact match in metadata
|
72 |
+
exact_matches = [
|
73 |
+
x['content'] for x in data['metadata']
|
74 |
+
if any(code in x['content'].lower() for code in course_code)
|
75 |
+
]
|
76 |
|
77 |
+
# Calculate remaining slots if we have fewer than top_k exact matches
|
78 |
+
remaining_slots = top_k - len(exact_matches)
|
79 |
|
80 |
+
if remaining_slots > 0:
|
81 |
+
# Perform embedding search for either the entire top_k if no exact match, or the remaining slots
|
|
|
|
|
82 |
xq = encoder.encode(query)
|
83 |
+
res = index.query(vector=xq.tolist(), top_k=remaining_slots if exact_matches else top_k, include_metadata=True)
|
84 |
+
|
85 |
+
# Add embedding-based matches (avoiding duplicates)
|
86 |
+
embedding_matches = [x["metadata"]['content'] for x in res["matches"]]
|
87 |
+
|
88 |
+
# Combine exact matches with embedding matches
|
89 |
+
exact_matches.extend(embedding_matches)
|
90 |
+
|
91 |
+
# Return the first top_k results
|
92 |
+
return exact_matches[:top_k]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
def get_response(query: str, docs: list[str]) -> str:
|
95 |
system_message = (
|
|
|
112 |
)
|
113 |
return chat_response.choices[0].message.content
|
114 |
|
|
|
|
|
115 |
def handle_query(user_query: str):
|
116 |
|
117 |
# Get relevant documents
|