Spaces:
Sleeping
Sleeping
added regex
Browse files
app.py
CHANGED
@@ -7,15 +7,8 @@ from pinecone import Pinecone, ServerlessSpec
|
|
7 |
from groq import Groq
|
8 |
from tqdm.auto import tqdm
|
9 |
import streamlit as st
|
|
|
10 |
|
11 |
-
# Required imports
|
12 |
-
import json
|
13 |
-
import time
|
14 |
-
import os
|
15 |
-
from sentence_transformers import SentenceTransformer
|
16 |
-
from pinecone import Pinecone, ServerlessSpec
|
17 |
-
from groq import Groq
|
18 |
-
from tqdm.auto import tqdm
|
19 |
|
20 |
# Constants (hardcoded)
|
21 |
FILE_PATH = "anjibot_chunks.json"
|
@@ -61,10 +54,45 @@ for i in tqdm(range(0, len(data['id']), BATCH_SIZE)):
|
|
61 |
to_upsert = list(zip(batch["id"], embeds, batch["metadata"]))
|
62 |
index.upsert(vectors=to_upsert)
|
63 |
|
64 |
-
def
|
65 |
-
|
66 |
-
|
67 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
def get_response(query: str, docs: list[str]) -> str:
|
70 |
system_message = (
|
@@ -92,7 +120,7 @@ def get_response(query: str, docs: list[str]) -> str:
|
|
92 |
def handle_query(user_query: str):
|
93 |
|
94 |
# Get relevant documents
|
95 |
-
docs = get_docs(user_query, top_k=5)
|
96 |
|
97 |
# Generate and return response
|
98 |
response = get_response(user_query, docs=docs)
|
|
|
7 |
from groq import Groq
|
8 |
from tqdm.auto import tqdm
|
9 |
import streamlit as st
|
10 |
+
import re
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Constants (hardcoded)
|
14 |
FILE_PATH = "anjibot_chunks.json"
|
|
|
54 |
to_upsert = list(zip(batch["id"], embeds, batch["metadata"]))
|
55 |
index.upsert(vectors=to_upsert)
|
56 |
|
57 |
+
def extract_course_code(text) -> list[str]:
|
58 |
+
pattern = r'\b(?:geds?|stats?|maths?|cosc|seng|itgy)\s*\d{3}\b'
|
59 |
+
match = re.findall(pattern, text, re.IGNORECASE)
|
60 |
+
return match if match else None
|
61 |
+
|
62 |
+
def get_docs(query: str, top_k: int, batch_size: int = 5, threshold: float = 0.66) -> list[str]:
|
63 |
+
queried_course_codes = extract_course_code(query)
|
64 |
+
|
65 |
+
i = 0
|
66 |
+
relevant_docs = []
|
67 |
+
|
68 |
+
while True:
|
69 |
+
xq = encoder.encode(query)
|
70 |
+
res = index.query(vector=xq.tolist(), top_k=batch_size, include_metadata=True, offset=i)
|
71 |
+
|
72 |
+
if len(res["matches"]) == 0:
|
73 |
+
break
|
74 |
+
|
75 |
+
for match in res["matches"]:
|
76 |
+
similarity_score = match['score']
|
77 |
+
content = match["metadata"]['content']
|
78 |
+
|
79 |
+
if similarity_score >= threshold:
|
80 |
+
if queried_course_codes:
|
81 |
+
for course_code in queried_course_codes:
|
82 |
+
if course_code in content:
|
83 |
+
relevant_docs.append(content)
|
84 |
+
break
|
85 |
+
|
86 |
+
if relevant_docs:
|
87 |
+
break
|
88 |
+
|
89 |
+
i += batch_size
|
90 |
+
|
91 |
+
if relevant_docs:
|
92 |
+
return relevant_docs
|
93 |
+
else:
|
94 |
+
return ["No exact match found for the course code, even after searching with a higher similarity score."]
|
95 |
+
|
96 |
|
97 |
def get_response(query: str, docs: list[str]) -> str:
|
98 |
system_message = (
|
|
|
120 |
def handle_query(user_query: str):
|
121 |
|
122 |
# Get relevant documents
|
123 |
+
docs = get_docs(user_query, top_k=5, threshold=0.66)
|
124 |
|
125 |
# Generate and return response
|
126 |
response = get_response(user_query, docs=docs)
|