Spaces:
Sleeping
Sleeping
File size: 18,965 Bytes
a288236 3f968e0 a288236 1e0c4ef a288236 bd04115 a288236 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
from langchain_openai import ChatOpenAI
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_community.agent_toolkits.load_tools import load_tools
from langchain_community.tools.tavily_search.tool import TavilySearchResults
from langchain_community.tools import ElevenLabsText2SpeechTool
import tiktoken
from typing import Dict, Any, List, Optional
import os
from dotenv import load_dotenv
from datetime import datetime
import logging
import json
from langchain.text_splitter import RecursiveCharacterTextSplitter
import numpy as np
from langchain.schema import SystemMessage, HumanMessage, AIMessage
from langchain.output_parsers import PydanticOutputParser
from pydantic import BaseModel, Field
from utils import save_transcript
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('logs/agents.log'),
logging.StreamHandler()
]
)
# Create loggers for each agent
extractor_logger = logging.getLogger('ExtractorAgent')
skeptic_logger = logging.getLogger('SkepticAgent')
believer_logger = logging.getLogger('BelieverAgent')
supervisor_logger = logging.getLogger('SupervisorAgent')
podcast_logger = logging.getLogger('PodcastProducerAgent')
# Load environment variables
load_dotenv()
# Get API keys
openai_api_key = os.getenv("OPENAI_API_KEY")
eleven_api_key = os.getenv("ELEVEN_API_KEY")
if not openai_api_key:
raise ValueError("OPENAI_API_KEY not found in environment variables")
if not eleven_api_key:
raise ValueError("ELEVEN_API_KEY not found in environment variables")
# Initialize the base LLM
base_llm = ChatOpenAI(
model_name="gpt-3.5-turbo",
temperature=0.7,
openai_api_key=openai_api_key
)
class ExtractorOutput(BaseModel):
content: str = Field(description="The extracted and refined query")
key_points: List[str] = Field(description="Key points extracted from the query")
class AgentResponse(BaseModel):
content: str = Field(description="The agent's response")
chunks: Optional[List[Dict[str, str]]] = Field(description="Relevant context chunks used", default=None)
class SupervisorOutput(BaseModel):
content: str = Field(description="The supervisor's analysis")
chunks: Dict[str, List[str]] = Field(description="Quadrant-based chunks of the analysis")
class PodcastOutput(BaseModel):
title: str = Field(description="Title of the podcast episode")
description: str = Field(description="Description of the episode")
script: str = Field(description="The podcast script")
summary: str = Field(description="A brief summary of the episode")
duration_minutes: int = Field(description="Estimated duration in minutes")
class ExtractorAgent:
def __init__(self, tavily_api_key: str):
self.search_tool = TavilySearchResults(
api_key=tavily_api_key,
max_results=5
)
self.prompt = ChatPromptTemplate.from_messages([
("system", """You are an expert information extractor. Your role is to:
1. Extract relevant information from search results
2. Organize the information in a clear, structured way
3. Focus on factual, verifiable information
4. Cite sources when possible"""),
("human", "{input}")
])
self.chain = self.prompt | base_llm
async def __call__(self, query: str) -> Dict[str, Any]:
try:
# Log the incoming query
extractor_logger.info(f"Processing query: {query}")
try:
# Search using Tavily
search_results = await self.search_tool.ainvoke(query)
extractor_logger.debug(f"Search results: {json.dumps(search_results, indent=2)}")
except Exception as e:
extractor_logger.error(f"Error in Tavily search: {str(e)}", exc_info=True)
raise Exception(f"Tavily search failed: {str(e)}")
# Format the results
if isinstance(search_results, list):
formatted_results = f"Search results for: {query}\n" + "\n".join(
[str(result) for result in search_results]
)
else:
formatted_results = f"Search results for: {query}\n{search_results}"
try:
# Generate response using the chain
response = await self.chain.ainvoke({"input": formatted_results})
extractor_logger.info(f"Generated response: {response.content}")
except Exception as e:
extractor_logger.error(f"Error in LLM chain: {str(e)}", exc_info=True)
raise Exception(f"LLM chain failed: {str(e)}")
return {
"type": "extractor",
"content": response.content,
"raw_results": search_results
}
except Exception as e:
extractor_logger.error(f"Error in ExtractorAgent: {str(e)}", exc_info=True)
raise Exception(f"Error in extractor: {str(e)}")
class SkepticAgent:
def __init__(self):
self.prompt = ChatPromptTemplate.from_messages([
("system", """You are a critical thinker engaging in a thoughtful discussion. While maintaining a balanced perspective, you should:
- Analyze potential challenges and limitations
- Consider real-world implications
- Support arguments with evidence and examples
- Maintain a respectful and constructive tone
- Raise important considerations
If provided with context information, use it to inform your response while maintaining your analytical perspective.
Focus on examining risks and important questions from the context.
Keep your responses concise and focused on the topic at hand."""),
("human", """Context information:
{chunks}
Question/Topic:
{input}""")
])
self.chain = self.prompt | base_llm
async def __call__(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
skeptic_logger.info(f"Processing input: {input_data['content']}")
chunks = input_data.get("chunks", [])
chunks_text = "\n".join(chunks) if chunks else "No additional context provided."
response = await self.chain.ainvoke({
"input": input_data["content"],
"chunks": chunks_text
})
skeptic_logger.info(f"Generated response: {response.content}")
return {"type": "skeptic", "content": response.content}
class BelieverAgent:
def __init__(self):
self.prompt = ChatPromptTemplate.from_messages([
("system", """You are an optimistic thinker engaging in a thoughtful discussion. While maintaining a balanced perspective, you should:
- Highlight opportunities and potential benefits
- Share innovative solutions and possibilities
- Support arguments with evidence and examples
- Maintain a constructive and forward-thinking tone
- Build on existing ideas positively
If provided with context information, use it to inform your response while maintaining your optimistic perspective.
Focus on opportunities and solutions from the context.
Keep your responses concise and focused on the topic at hand."""),
("human", """Context information:
{chunks}
Question/Topic:
{input}""")
])
self.chain = self.prompt | base_llm
async def __call__(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
believer_logger.info(f"Processing input: {input_data['content']}")
chunks = input_data.get("chunks", [])
chunks_text = "\n".join(chunks) if chunks else "No additional context provided."
response = await self.chain.ainvoke({
"input": input_data["content"],
"chunks": chunks_text
})
believer_logger.info(f"Generated response: {response.content}")
return {"type": "believer", "content": response.content}
class SupervisorAgent:
def __init__(self):
self.prompt = ChatPromptTemplate.from_messages([
("system", """You are a balanced supervisor. Your role is to:
1. Analyze inputs from all agents
2. Identify key points and insights
3. Balance different perspectives
4. Synthesize a comprehensive view
5. Provide clear, actionable conclusions
Organize your response into these sections:
- Opportunities: Key possibilities and positive aspects
- Risks: Important challenges and concerns
- Questions: Critical questions to consider
- Solutions: Potential ways forward
Focus on creating a balanced, well-reasoned synthesis of all viewpoints.
Keep your words to 100 words or less."""),
("human", "Analyze the following perspectives:\n\nExtractor: {extractor_content}\n\nSkeptic: {skeptic_content}\n\nBeliever: {believer_content}")
])
self.chain = self.prompt | base_llm
async def __call__(self, agent_responses: Dict[str, Any]) -> Dict[str, Any]:
supervisor_logger.info("Processing agent responses:")
supervisor_logger.info(f"Extractor: {agent_responses['extractor']['content']}")
supervisor_logger.info(f"Skeptic: {agent_responses['skeptic']['content']}")
supervisor_logger.info(f"Believer: {agent_responses['believer']['content']}")
# Process supervisor's analysis
response = await self.chain.ainvoke({
"extractor_content": agent_responses["extractor"]["content"],
"skeptic_content": agent_responses["skeptic"]["content"],
"believer_content": agent_responses["believer"]["content"]
})
supervisor_logger.info(f"Generated analysis: {response.content}")
# Parse the response into sections
content = response.content
sections = {
"opportunities": [],
"risks": [],
"questions": [],
"solutions": []
}
# Simple parsing of the content into sections
current_section = None
for line in content.split('\n'):
line = line.strip()
if line.lower().startswith('opportunities:'):
current_section = "opportunities"
elif line.lower().startswith('risks:'):
current_section = "risks"
elif line.lower().startswith('questions:'):
current_section = "questions"
elif line.lower().startswith('solutions:'):
current_section = "solutions"
elif line and current_section:
sections[current_section].append(line)
return {
"type": "supervisor",
"content": response.content,
"chunks": sections
}
class PodcastProducerAgent:
def __init__(self):
podcast_logger.info("Initializing PodcastProducerAgent")
# Initialize the agent with a lower temperature for more consistent output
llm = ChatOpenAI(
model_name="gpt-3.5-turbo",
temperature=0.3,
openai_api_key=openai_api_key
)
# Create audio storage directory if it doesn't exist
self.audio_dir = os.path.join(os.path.dirname(__file__), "audio_storage")
os.makedirs(self.audio_dir, exist_ok=True)
podcast_logger.info(f"Audio directory: {self.audio_dir}")
self.prompt = ChatPromptTemplate.from_messages([
("system", """You are an expert podcast producer. Create a single, cohesive podcast script that:
1. Introduces the topic clearly
2. Presents a balanced debate between perspectives
3. Incorporates key insights from the supervisor's analysis:
- Opportunities and positive aspects
- Risks and challenges
- Key questions to consider
- Potential solutions
4. Prioritizes content based on quadrant analysis:
- Important & Urgent: Address first and emphasize
- Important & Not Urgent: Cover thoroughly but with less urgency
- Not Important & Urgent: Mention briefly if relevant
- Not Important & Not Urgent: Include only if adds value
5. Maintains natural conversation flow with clear speaker transitions
6. Concludes with actionable takeaways
Keep the tone professional but conversational. Format the script with clear speaker indicators and natural pauses."""),
("human", """Create a podcast script from this content:
Topic: {user_query}
Debate Content:
{debate_content}
Supervisor's Analysis:
{supervisor_content}
Quadrant Analysis:
Important & Urgent:
{important_urgent}
Important & Not Urgent:
{important_not_urgent}
Not Important & Urgent:
{not_important_urgent}
Not Important & Not Urgent:
{not_important_not_urgent}""")
])
self.chain = self.prompt | llm
# Metadata prompt for categorization
self.metadata_prompt = ChatPromptTemplate.from_messages([
("system", """Analyze the debate and provide:
1. A category (single word: technology/science/society/politics/economics/culture)
2. A short description (3-4 words) of the main topic
Format: category|short_description"""),
("human", "{content}")
])
self.metadata_chain = self.metadata_prompt | llm
async def __call__(self, debate_history: list, supervisor_notes: list, user_query: str, supervisor_chunks: dict, quadrant_analysis: dict) -> Dict[str, Any]:
try:
podcast_logger.info("Starting podcast production")
# Format the debate content
debate_content = "\n\n".join([
f"{entry['speaker']}: {entry['content']}"
for entry in debate_history
])
# Get the latest supervisor analysis
supervisor_content = supervisor_notes[-1] if supervisor_notes else ""
# Format quadrant content
important_urgent = "\n".join(quadrant_analysis.get("important_urgent", []))
important_not_urgent = "\n".join(quadrant_analysis.get("important_not_urgent", []))
not_important_urgent = "\n".join(quadrant_analysis.get("not_important_urgent", []))
not_important_not_urgent = "\n".join(quadrant_analysis.get("not_important_not_urgent", []))
# Generate the podcast script
script_response = await self.chain.ainvoke({
"user_query": user_query,
"debate_content": debate_content,
"supervisor_content": supervisor_content,
"important_urgent": important_urgent,
"important_not_urgent": important_not_urgent,
"not_important_urgent": not_important_urgent,
"not_important_not_urgent": not_important_not_urgent
})
# Get metadata for the podcast
metadata_response = await self.metadata_chain.ainvoke({
"content": script_response.content
})
category, description = metadata_response.content.strip().split("|")
# Clean up filename components
clean_query = user_query.lower().replace(" ", "_")[:30]
clean_description = description.lower().replace(" ", "_")
clean_category = category.lower().strip()
try:
# Create a single filename with hyphens separating main components
filename = f"{clean_query}-{clean_description}-{clean_category}.mp3"
filepath = os.path.join(self.audio_dir, filename)
# Generate audio file
from gtts import gTTS
tts = gTTS(text=script_response.content, lang='en')
tts.save(filepath)
podcast_logger.info(f"Successfully saved audio file: {filepath}")
# Save the transcript
try:
save_transcript(script_response.content, user_query)
podcast_logger.info("Successfully saved transcript")
except Exception as e:
podcast_logger.error(f"Error saving transcript: {str(e)}")
return {
"type": "podcast",
"content": script_response.content,
"audio_file": filename,
"category": clean_category,
"description": description,
"title": f"Debate: {description.title()}"
}
except Exception as e:
podcast_logger.error(f"Error in audio generation: {str(e)}", exc_info=True)
return {
"type": "podcast",
"content": script_response.content,
"error": f"Audio generation failed: {str(e)}"
}
except Exception as e:
podcast_logger.error(f"Error in podcast production: {str(e)}", exc_info=True)
return {
"type": "podcast",
"error": f"Podcast production failed: {str(e)}"
}
def create_agents(tavily_api_key: str) -> Dict[str, Any]:
# Initialize all agents
extractor = ExtractorAgent(tavily_api_key)
believer = BelieverAgent()
skeptic = SkepticAgent()
supervisor = SupervisorAgent()
podcast_producer = PodcastProducerAgent()
return {
"extractor": extractor,
"believer": believer,
"skeptic": skeptic,
"supervisor": supervisor,
"podcast_producer": podcast_producer
} |