Spaces:
Sleeping
Sleeping
Nagesh Muralidhar
commited on
Commit
·
3f968e0
1
Parent(s):
bd04115
midterm-submission
Browse files- server/agents.py +1 -1
- server/utils.py +52 -0
- server/workflow.py +21 -18
server/agents.py
CHANGED
@@ -15,7 +15,7 @@ import numpy as np
|
|
15 |
from langchain.schema import SystemMessage, HumanMessage, AIMessage
|
16 |
from langchain.output_parsers import PydanticOutputParser
|
17 |
from pydantic import BaseModel, Field
|
18 |
-
from
|
19 |
|
20 |
# Configure logging
|
21 |
logging.basicConfig(
|
|
|
15 |
from langchain.schema import SystemMessage, HumanMessage, AIMessage
|
16 |
from langchain.output_parsers import PydanticOutputParser
|
17 |
from pydantic import BaseModel, Field
|
18 |
+
from utils import save_transcript
|
19 |
|
20 |
# Configure logging
|
21 |
logging.basicConfig(
|
server/utils.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import uuid
|
4 |
+
import logging
|
5 |
+
|
6 |
+
# Configure logging
|
7 |
+
logger = logging.getLogger(__name__)
|
8 |
+
|
9 |
+
# Create transcripts directory if it doesn't exist
|
10 |
+
TRANSCRIPTS_DIR = os.path.join(os.path.dirname(__file__), "transcripts")
|
11 |
+
os.makedirs(TRANSCRIPTS_DIR, exist_ok=True)
|
12 |
+
TRANSCRIPTS_FILE = os.path.join(TRANSCRIPTS_DIR, "podcasts.json")
|
13 |
+
|
14 |
+
def save_transcript(podcast_script: str, user_query: str) -> None:
|
15 |
+
"""Save podcast transcript to JSON file."""
|
16 |
+
# Create new transcript entry
|
17 |
+
transcript = {
|
18 |
+
"id": str(uuid.uuid4()),
|
19 |
+
"podcastScript": podcast_script,
|
20 |
+
"topic": user_query
|
21 |
+
}
|
22 |
+
|
23 |
+
try:
|
24 |
+
# Load existing transcripts
|
25 |
+
if os.path.exists(TRANSCRIPTS_FILE):
|
26 |
+
try:
|
27 |
+
with open(TRANSCRIPTS_FILE, 'r') as f:
|
28 |
+
transcripts = json.load(f)
|
29 |
+
if not isinstance(transcripts, list):
|
30 |
+
transcripts = []
|
31 |
+
except json.JSONDecodeError:
|
32 |
+
logger.warning("Error reading transcripts file, initializing empty list")
|
33 |
+
transcripts = []
|
34 |
+
else:
|
35 |
+
transcripts = []
|
36 |
+
|
37 |
+
# Append new transcript
|
38 |
+
transcripts.append(transcript)
|
39 |
+
|
40 |
+
# Save updated transcripts
|
41 |
+
with open(TRANSCRIPTS_FILE, 'w') as f:
|
42 |
+
json.dump(transcripts, f, indent=2)
|
43 |
+
logger.info("Successfully saved transcript")
|
44 |
+
|
45 |
+
except Exception as e:
|
46 |
+
logger.error(f"Error saving transcript: {str(e)}")
|
47 |
+
# Create directory if it doesn't exist
|
48 |
+
os.makedirs(os.path.dirname(TRANSCRIPTS_FILE), exist_ok=True)
|
49 |
+
# Try to save just this transcript
|
50 |
+
with open(TRANSCRIPTS_FILE, 'w') as f:
|
51 |
+
json.dump([transcript], f, indent=2)
|
52 |
+
logger.info("Saved single transcript after error")
|
server/workflow.py
CHANGED
@@ -1,10 +1,13 @@
|
|
1 |
from typing import Dict, Any, List, Annotated, TypedDict, Union, Optional
|
2 |
from langgraph.graph import Graph, END
|
3 |
from agents import create_agents
|
|
|
4 |
import os
|
5 |
from dotenv import load_dotenv
|
6 |
-
import
|
7 |
-
|
|
|
|
|
8 |
|
9 |
# Load environment variables
|
10 |
load_dotenv()
|
@@ -73,11 +76,11 @@ def create_workflow(tavily_api_key: str):
|
|
73 |
# Define the extractor node function
|
74 |
async def run_extractor(state: AgentState) -> Dict[str, Any]:
|
75 |
query = state["messages"][-1]["content"]
|
76 |
-
|
77 |
|
78 |
try:
|
79 |
response = await agents["extractor"](query)
|
80 |
-
|
81 |
|
82 |
# Update state
|
83 |
state["extractor_data"] = response
|
@@ -88,7 +91,7 @@ def create_workflow(tavily_api_key: str):
|
|
88 |
"skeptic": {"content": "Not started"},
|
89 |
"believer": {"content": "Not started"}
|
90 |
})
|
91 |
-
|
92 |
|
93 |
state["supervisor_notes"].append(supervisor_analysis["content"])
|
94 |
state["supervisor_chunks"].append(supervisor_analysis.get("chunks", {}))
|
@@ -97,17 +100,17 @@ def create_workflow(tavily_api_key: str):
|
|
97 |
state["current_agent"] = "debate"
|
98 |
return state
|
99 |
except Exception as e:
|
100 |
-
|
101 |
raise Exception(f"Error in extractor: {str(e)}")
|
102 |
|
103 |
# Define the debate node function
|
104 |
async def run_debate(state: AgentState) -> Dict[str, Any]:
|
105 |
-
|
106 |
|
107 |
try:
|
108 |
if state["debate_turns"] == 0:
|
109 |
# First turn: both agents respond to extractor
|
110 |
-
|
111 |
|
112 |
# If we have context, use it to inform the agents' responses
|
113 |
context = state.get("context", {})
|
@@ -126,7 +129,7 @@ def create_workflow(tavily_api_key: str):
|
|
126 |
{"speaker": "skeptic", "content": skeptic_response["content"]},
|
127 |
{"speaker": "believer", "content": believer_response["content"]}
|
128 |
])
|
129 |
-
|
130 |
else:
|
131 |
# Alternating responses based on agent type if specified
|
132 |
if state["agent_type"] in ["believer", "skeptic"]:
|
@@ -136,7 +139,7 @@ def create_workflow(tavily_api_key: str):
|
|
136 |
last_speaker = state["debate_history"][-1]["speaker"]
|
137 |
current_speaker = "believer" if last_speaker == "skeptic" else "skeptic"
|
138 |
|
139 |
-
|
140 |
|
141 |
# Create context-aware input
|
142 |
context = state.get("context", {})
|
@@ -152,7 +155,7 @@ def create_workflow(tavily_api_key: str):
|
|
152 |
"speaker": current_speaker,
|
153 |
"content": response["content"]
|
154 |
})
|
155 |
-
|
156 |
|
157 |
# Add supervisor note and chunks
|
158 |
supervisor_analysis = await agents["supervisor"]({
|
@@ -160,26 +163,26 @@ def create_workflow(tavily_api_key: str):
|
|
160 |
"skeptic": {"content": state["debate_history"][-1]["content"]},
|
161 |
"believer": {"content": state["debate_history"][-2]["content"] if len(state["debate_history"]) > 1 else "Not started"}
|
162 |
})
|
163 |
-
|
164 |
|
165 |
state["supervisor_notes"].append(supervisor_analysis["content"])
|
166 |
state["supervisor_chunks"].append(supervisor_analysis.get("chunks", {}))
|
167 |
|
168 |
state["debate_turns"] += 1
|
169 |
-
|
170 |
|
171 |
# End the workflow after 2 debate turns
|
172 |
if state["debate_turns"] >= 2:
|
173 |
state["current_agent"] = "podcast"
|
174 |
-
|
175 |
|
176 |
return state
|
177 |
except Exception as e:
|
178 |
-
|
179 |
raise Exception(f"Error in debate: {str(e)}")
|
180 |
|
181 |
async def run_podcast_producer(state: AgentState) -> Dict[str, Any]:
|
182 |
-
|
183 |
|
184 |
try:
|
185 |
# Create podcast from debate
|
@@ -190,7 +193,7 @@ def create_workflow(tavily_api_key: str):
|
|
190 |
state["supervisor_chunks"],
|
191 |
{} # Empty quadrant analysis since we removed storage manager
|
192 |
)
|
193 |
-
|
194 |
|
195 |
# Save transcript to JSON file
|
196 |
save_transcript(
|
@@ -205,7 +208,7 @@ def create_workflow(tavily_api_key: str):
|
|
205 |
state["current_agent"] = END
|
206 |
return state
|
207 |
except Exception as e:
|
208 |
-
|
209 |
raise Exception(f"Error in podcast production: {str(e)}")
|
210 |
|
211 |
# Add nodes to the graph
|
|
|
1 |
from typing import Dict, Any, List, Annotated, TypedDict, Union, Optional
|
2 |
from langgraph.graph import Graph, END
|
3 |
from agents import create_agents
|
4 |
+
from utils import save_transcript
|
5 |
import os
|
6 |
from dotenv import load_dotenv
|
7 |
+
import logging
|
8 |
+
|
9 |
+
# Configure logging
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
|
12 |
# Load environment variables
|
13 |
load_dotenv()
|
|
|
76 |
# Define the extractor node function
|
77 |
async def run_extractor(state: AgentState) -> Dict[str, Any]:
|
78 |
query = state["messages"][-1]["content"]
|
79 |
+
logger.info(f"Extractor processing query: {query}")
|
80 |
|
81 |
try:
|
82 |
response = await agents["extractor"](query)
|
83 |
+
logger.info(f"Extractor response: {response}")
|
84 |
|
85 |
# Update state
|
86 |
state["extractor_data"] = response
|
|
|
91 |
"skeptic": {"content": "Not started"},
|
92 |
"believer": {"content": "Not started"}
|
93 |
})
|
94 |
+
logger.info(f"Initial supervisor analysis: {supervisor_analysis}")
|
95 |
|
96 |
state["supervisor_notes"].append(supervisor_analysis["content"])
|
97 |
state["supervisor_chunks"].append(supervisor_analysis.get("chunks", {}))
|
|
|
100 |
state["current_agent"] = "debate"
|
101 |
return state
|
102 |
except Exception as e:
|
103 |
+
logger.error(f"Error in extractor: {str(e)}")
|
104 |
raise Exception(f"Error in extractor: {str(e)}")
|
105 |
|
106 |
# Define the debate node function
|
107 |
async def run_debate(state: AgentState) -> Dict[str, Any]:
|
108 |
+
logger.info(f"Debate turn {state['debate_turns']}")
|
109 |
|
110 |
try:
|
111 |
if state["debate_turns"] == 0:
|
112 |
# First turn: both agents respond to extractor
|
113 |
+
logger.info("Starting first debate turn")
|
114 |
|
115 |
# If we have context, use it to inform the agents' responses
|
116 |
context = state.get("context", {})
|
|
|
129 |
{"speaker": "skeptic", "content": skeptic_response["content"]},
|
130 |
{"speaker": "believer", "content": believer_response["content"]}
|
131 |
])
|
132 |
+
logger.info(f"First turn responses added: {state['debate_history'][-2:]}")
|
133 |
else:
|
134 |
# Alternating responses based on agent type if specified
|
135 |
if state["agent_type"] in ["believer", "skeptic"]:
|
|
|
139 |
last_speaker = state["debate_history"][-1]["speaker"]
|
140 |
current_speaker = "believer" if last_speaker == "skeptic" else "skeptic"
|
141 |
|
142 |
+
logger.info(f"Processing response for {current_speaker}")
|
143 |
|
144 |
# Create context-aware input
|
145 |
context = state.get("context", {})
|
|
|
155 |
"speaker": current_speaker,
|
156 |
"content": response["content"]
|
157 |
})
|
158 |
+
logger.info(f"Added response: {state['debate_history'][-1]}")
|
159 |
|
160 |
# Add supervisor note and chunks
|
161 |
supervisor_analysis = await agents["supervisor"]({
|
|
|
163 |
"skeptic": {"content": state["debate_history"][-1]["content"]},
|
164 |
"believer": {"content": state["debate_history"][-2]["content"] if len(state["debate_history"]) > 1 else "Not started"}
|
165 |
})
|
166 |
+
logger.info(f"Supervisor analysis: {supervisor_analysis}")
|
167 |
|
168 |
state["supervisor_notes"].append(supervisor_analysis["content"])
|
169 |
state["supervisor_chunks"].append(supervisor_analysis.get("chunks", {}))
|
170 |
|
171 |
state["debate_turns"] += 1
|
172 |
+
logger.info(f"Debate turn {state['debate_turns']} completed")
|
173 |
|
174 |
# End the workflow after 2 debate turns
|
175 |
if state["debate_turns"] >= 2:
|
176 |
state["current_agent"] = "podcast"
|
177 |
+
logger.info("Moving to podcast production")
|
178 |
|
179 |
return state
|
180 |
except Exception as e:
|
181 |
+
logger.error(f"Error in debate: {str(e)}")
|
182 |
raise Exception(f"Error in debate: {str(e)}")
|
183 |
|
184 |
async def run_podcast_producer(state: AgentState) -> Dict[str, Any]:
|
185 |
+
logger.info("Starting podcast production")
|
186 |
|
187 |
try:
|
188 |
# Create podcast from debate
|
|
|
193 |
state["supervisor_chunks"],
|
194 |
{} # Empty quadrant analysis since we removed storage manager
|
195 |
)
|
196 |
+
logger.info(f"Podcast production result: {podcast_result}")
|
197 |
|
198 |
# Save transcript to JSON file
|
199 |
save_transcript(
|
|
|
208 |
state["current_agent"] = END
|
209 |
return state
|
210 |
except Exception as e:
|
211 |
+
logger.error(f"Error in podcast production: {str(e)}")
|
212 |
raise Exception(f"Error in podcast production: {str(e)}")
|
213 |
|
214 |
# Add nodes to the graph
|