llm-chat / app.py
darpan-jain's picture
Include chatbot methods within the Blocks flow
030066b
raw
history blame
1.68 kB
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import torch
import random
import time
# tokenizer = AutoTokenizer.from_pretrained("chavinlo/gpt4-x-alpaca")
# model = AutoModelForCausalLM.from_pretrained("chavinlo/gpt4-x-alpaca")
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
# def bot(history):
# user_message = history[-1][0]
# new_user_input_ids = tokenizer.encode(user_message + tokenizer.eos_token, return_tensors='pt')
#
# # append the new user input tokens to the chat history
# bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
#
# # generate a response
# history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
#
# # convert the tokens to text, and then split the responses into lines
# response = tokenizer.decode(history[0]).split("<|endoftext|>")
# response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
# return history
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history):
bot_message = random.choice(["Yes", "No"])
history[-1][1] = bot_message
time.sleep(1)
return history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.launch()