Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import gradio as gr | |
import torch | |
import random | |
import time | |
# tokenizer = AutoTokenizer.from_pretrained("chavinlo/gpt4-x-alpaca") | |
# model = AutoModelForCausalLM.from_pretrained("chavinlo/gpt4-x-alpaca") | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") | |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") | |
# def bot(history): | |
# user_message = history[-1][0] | |
# new_user_input_ids = tokenizer.encode(user_message + tokenizer.eos_token, return_tensors='pt') | |
# | |
# # append the new user input tokens to the chat history | |
# bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) | |
# | |
# # generate a response | |
# history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() | |
# | |
# # convert the tokens to text, and then split the responses into lines | |
# response = tokenizer.decode(history[0]).split("<|endoftext|>") | |
# response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list | |
# return history | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox() | |
clear = gr.Button("Clear") | |
def user(user_message, history): | |
return "", history + [[user_message, None]] | |
def bot(history): | |
bot_message = random.choice(["Yes", "No"]) | |
history[-1][1] = bot_message | |
time.sleep(1) | |
return history | |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, chatbot, chatbot | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.launch() |