from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr import torch import random import time # tokenizer = AutoTokenizer.from_pretrained("chavinlo/gpt4-x-alpaca") # model = AutoModelForCausalLM.from_pretrained("chavinlo/gpt4-x-alpaca") tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") # def bot(history): # user_message = history[-1][0] # new_user_input_ids = tokenizer.encode(user_message + tokenizer.eos_token, return_tensors='pt') # # # append the new user input tokens to the chat history # bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) # # # generate a response # history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() # # # convert the tokens to text, and then split the responses into lines # response = tokenizer.decode(history[0]).split("<|endoftext|>") # response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list # return history with gr.Blocks() as demo: chatbot = gr.Chatbot() msg = gr.Textbox() clear = gr.Button("Clear") def user(user_message, history): return "", history + [[user_message, None]] def bot(history): bot_message = random.choice(["Yes", "No"]) history[-1][1] = bot_message time.sleep(1) return history msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( bot, chatbot, chatbot ) clear.click(lambda: None, None, chatbot, queue=False) demo.launch()