|
import os |
|
import time |
|
import base64 |
|
import pickle |
|
import numpy as np |
|
import pandas as pd |
|
import streamlit as st |
|
import plotly.express as px |
|
from PIL import Image |
|
from collections import deque |
|
from urllib.request import urlopen |
|
|
|
|
|
|
|
base_path = os.path.abspath(os.path.dirname(__file__)) |
|
model_path = os.path.join(base_path, 'model') |
|
img_path = os.path.join(base_path, 'img') |
|
|
|
|
|
model_filename = 'model_rating.pkl' |
|
scaler_filename = 'model_feat_scaling.pkl' |
|
encoder_filename = 'model_feat_enc.pkl' |
|
|
|
model_filepath = os.path.join(model_path, model_filename) |
|
scaler_filepath = os.path.join(model_path, scaler_filename) |
|
encoder_filepath = os.path.join(model_path, encoder_filename) |
|
|
|
with open(model_filepath, "rb") as filename: |
|
model_rating = pickle.load(filename) |
|
|
|
with open(scaler_filepath, "rb") as filename: |
|
scaler = pickle.load(filename) |
|
|
|
with open(encoder_filepath, "rb") as filename: |
|
encoder = pickle.load(filename) |
|
|
|
|
|
st.set_page_config( |
|
page_title = 'FIFA 2022 Player Rating\'s Prediction', |
|
layout = 'wide', |
|
initial_sidebar_state = 'auto', |
|
menu_items = { |
|
'About': ''' |
|
## FIFA 2022 Player Rating\'s Prediction |
|
--- |
|
_Made by Danu Purnomo_ |
|
|
|
Predict rating of a football player based on FIFA 2022 players. |
|
''' |
|
} |
|
) |
|
|
|
|
|
def convert_img_to_base64(img_path): |
|
with open(img_path, 'rb') as image_file: |
|
encoded_string = base64.b64encode(image_file.read()) |
|
return encoded_string |
|
|
|
img_background_path = os.path.join(img_path, '01 - background.jpg') |
|
|
|
encoded_string = convert_img_to_base64(img_background_path) |
|
st.markdown( |
|
f""" |
|
<style> |
|
.stApp {{ |
|
background-color: #dbe8ff; |
|
}} |
|
|
|
</style> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|
|
|
|
text_title = '<h1 style="font-family:sans-serif; color:#051d69; text-align:center;">FIFA 2022 Player\'s Rating Predictions</h1>' |
|
st.markdown(text_title, unsafe_allow_html=True) |
|
|
|
|
|
gif0 = '<div style="width:1080px"><iframe allow="fullscreen" align="center" frameBorder="0" height="720" src="https://giphy.com/embed/ICE7YmNTU9MatWIgxi/video" width=" 1380"></iframe></div>' |
|
st.markdown(gif0, unsafe_allow_html=True) |
|
|
|
|
|
st.markdown('---') |
|
text_style = '<p style="font-family:sans-serif; color:#b41ff0; font-size: 30px;">Set Parameters</p>' |
|
st.markdown(text_style, unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with st.form(key='form_parameters'): |
|
|
|
|
|
header_section_1 = '<p style="font-family:sans-serif; color:#67b8f8; font-size: 20px;"> Personal Profile </p>' |
|
st.markdown(header_section_1, unsafe_allow_html=True) |
|
|
|
col1, col2, col3 = st.columns([1, 1, 1]) |
|
st.markdown(f'<p style="background-color:#0066cc;color:#33ff33;font-size:24px;border-radius:2%;"></p>', unsafe_allow_html=True) |
|
with col1: |
|
img_personal_profile_path = os.path.join(img_path, '02 - personal profile.png') |
|
image = Image.open(img_personal_profile_path) |
|
st.image(image, width=350) |
|
|
|
with col2: |
|
col_name = st.text_input('Name', value='', help='Player\'s name') |
|
col_age = st.number_input('Age', min_value=14, max_value=60, value=22, step=1, help='Player\'s age. Default age is 22.') |
|
col_price = st.number_input('Price (EUR)', min_value=0, value=1000000, step=1, format='%d', help='Player\'s price. Default price is EUR 1,000,000.') |
|
|
|
with col3: |
|
col_height = st.number_input('Height (cm)', min_value=140, max_value=220, value=180, step=1, help='Player\'s height. Default height is 180 cm.') |
|
col_weight = st.number_input('Weight (kg)', min_value=40, max_value=120, value=70, step=1, help='Player\'s weight. Default weight is 70 kg.') |
|
|
|
|
|
header_section_2 = '<p style="font-family:sans-serif; color:#67b8f8; font-size: 20px;"> Work Rate </p>' |
|
st.markdown('---') |
|
st.markdown(header_section_2, unsafe_allow_html=True) |
|
|
|
col1, col2, col3 = st.columns([1, 1, 1]) |
|
with col1: |
|
img_work_rate_path = os.path.join(img_path, '03 - work rate.png') |
|
image = Image.open(img_work_rate_path) |
|
st.image(image, width=250) |
|
|
|
with col2: |
|
col_attacking_work_rate = st.selectbox('Attacking Work Rate', ['-', 'Low', 'Medium', 'High'], index=0, help='Player\'s desire to attack.') |
|
col_defensive_work_rate = st.selectbox('Defensive Work Rate', ['-', 'Low', 'Medium', 'High'], index=0, help='Player\'s desire to defend.') |
|
|
|
|
|
header_section_3 = '<p style="font-family:sans-serif; color:#67b8f8; font-size: 20px;"> Ability </p>' |
|
st.markdown('---') |
|
st.markdown(header_section_3, unsafe_allow_html=True) |
|
|
|
col1, col2, col3 = st.columns([1, 1, 1]) |
|
with col1: |
|
img_work_rate_path = os.path.join(img_path, '04 - ability.png') |
|
image = Image.open(img_work_rate_path) |
|
st.image(image, width=350) |
|
|
|
with col2: |
|
col_pace_total = st.number_input('Pace Total', min_value=0, max_value=100, value=50, step=1, help='How fast is a player.') |
|
col_shooting_total = st.number_input('Shooting Total', min_value=0, max_value=100, value=50, step=1, help='How good at kicking.') |
|
col_passing_total = st.number_input('Passing Total', min_value=0, max_value=100, value=50, step=1, help='How good at passing.') |
|
|
|
with col3: |
|
col_dribbling_total = st.number_input('Dribbling Total', min_value=0, max_value=100, value=50, step=1, help='How good at dribbling.') |
|
col_defending_total = st.number_input('Defending Total', min_value=0, max_value=100, value=50, step=1, help='How good at defending.') |
|
col_physicality_total = st.number_input('Physicality Total', min_value=0, max_value=100, value=50, step=1, help='How good is a player\'s physique.') |
|
|
|
|
|
st.markdown('<br><br>', unsafe_allow_html=True) |
|
col1, col2, col3 = st.columns([3, 1, 3]) |
|
with col2: |
|
submitted = st.form_submit_button('Predict') |
|
|
|
|
|
|
|
|
|
|
|
new_data = { |
|
'Name': [col_name], |
|
'Age': [col_age], |
|
'Height': [col_height], |
|
'Weight': [col_weight], |
|
'Price': [col_price], |
|
'AttackingWorkRate': [col_attacking_work_rate], |
|
'DefensiveWorkRate': [col_defensive_work_rate], |
|
'PaceTotal': [col_pace_total], |
|
'ShootingTotal': [col_shooting_total], |
|
'PassingTotal': [col_passing_total], |
|
'DribblingTotal': [col_dribbling_total], |
|
'DefendingTotal': [col_defending_total], |
|
'PhysicalityTotal': [col_physicality_total] |
|
} |
|
|
|
new_data_for_radar_plot = { |
|
'PaceTotal': [col_pace_total], |
|
'ShootingTotal': [col_shooting_total], |
|
'PassingTotal': [col_passing_total], |
|
'DribblingTotal': [col_dribbling_total], |
|
'DefendingTotal': [col_defending_total], |
|
'PhysicalityTotal': [col_physicality_total] |
|
} |
|
|
|
new_data = pd.DataFrame.from_dict(new_data) |
|
new_data_for_radar_plot = pd.DataFrame.from_dict(new_data_for_radar_plot) |
|
|
|
print('New Data : ', new_data) |
|
|
|
result_section = st.empty() |
|
if submitted : |
|
|
|
num_columns = ['Age', 'Height', 'Weight', 'Price', 'PaceTotal', 'ShootingTotal', 'PassingTotal', 'DribblingTotal', 'DefendingTotal', 'PhysicalityTotal'] |
|
cat_columns = ['AttackingWorkRate', 'DefensiveWorkRate'] |
|
|
|
new_data_num = new_data[num_columns] |
|
new_data_cat = new_data[cat_columns] |
|
|
|
|
|
new_data_num_scaled = scaler.transform(new_data_num) |
|
new_data_cat_encoded = encoder.transform(new_data_cat) |
|
|
|
|
|
new_data_final = np.concatenate([new_data_num_scaled, new_data_cat_encoded], axis=1) |
|
|
|
|
|
y_pred_inf = model_rating.predict(new_data_final) |
|
print(type(y_pred_inf)) |
|
|
|
|
|
result_section.empty() |
|
bar = st.progress(0) |
|
for i in range(100): |
|
bar.progress(i + 1) |
|
time.sleep(0.01) |
|
bar.empty() |
|
|
|
with result_section.container(): |
|
st.markdown('<br><br>', unsafe_allow_html=True) |
|
|
|
col1, col2, col3, col4, col5 = st.columns([0.5, 2, 1, 2, 1]) |
|
with col2: |
|
img_personal_profile_path = os.path.join(img_path, '05 - person rear.png') |
|
image = Image.open(img_personal_profile_path) |
|
st.image(image, width=350) |
|
|
|
with col3: |
|
st.markdown('<br><br><br><br>', unsafe_allow_html=True) |
|
player_name = '<h1 style="font-family:helvetica; color:#fff9ac; text-align:center"> ' + col_name + ' </h1>' |
|
st.markdown(player_name, unsafe_allow_html=True) |
|
|
|
player_rating_pred = '<p style="font-family:helvetica; color:#494d55; font-size:100px; text-align:center"> <b>' + str(int(y_pred_inf)) + ' </p>' |
|
st.markdown(player_rating_pred, unsafe_allow_html=True) |
|
|
|
with col4: |
|
st.markdown('<br><br>', unsafe_allow_html=True) |
|
skill_total_fig = px.line_polar( |
|
r = new_data_for_radar_plot.loc[0].values, |
|
theta = new_data_for_radar_plot.columns, |
|
line_close = True, |
|
range_r = [0, 100], |
|
color_discrete_sequence = ['#FFF9AC'], |
|
|
|
template='plotly_dark') |
|
skill_total_fig.update_traces(fill='toself') |
|
skill_total_fig.update_layout({ |
|
'plot_bgcolor': 'rgba(255, 0, 0, 0)', |
|
'paper_bgcolor': 'rgba(0, 0, 0, 0)', |
|
'font_size': 19 |
|
}) |
|
st.write(skill_total_fig) |
|
|
|
st.write('''Source images : |
|
[link](https://www.vecteezy.com/vector-art/5129950-football-player-figure-line-art-human-action-on-motion-lines-controlling-the-ball-with-chest), |
|
[link](https://www.vecteezy.com/vector-art/5939693-football-player-figure-line-art-human-action-on-motion-lines-kicking-ball), |
|
[link](https://www.vecteezy.com/vector-art/5129956-football-player-figure-line-art-human-action-on-motion-lines-kicking-ball), |
|
[link](https://www.dreamstime.com/young-african-soccer-player-man-studio-isolated-white-background-silhouette-shadow-young-african-soccer-player-man-image199265151) |
|
''') |