File size: 11,361 Bytes
b495898
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2ac9ac
74bfae0
b495898
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e4d594
8cfdf08
2e4d594
 
 
 
 
8aa0c0b
2e4d594
 
 
 
 
 
 
b495898
 
8aa0c0b
b495898
 
 
5fe00f3
b495898
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a80b06a
 
 
b495898
 
 
 
 
 
5a3cff5
b495898
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8e085a
b495898
 
a80b06a
 
a8e085a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os
import time
import base64
import pickle
import numpy as np
import pandas as pd
import streamlit as st
import plotly.express as px
from PIL import Image
from collections import deque
from urllib.request import urlopen


# STEP 1 - DEFINE PATHS
base_path = os.path.abspath(os.path.dirname(__file__))
model_path = os.path.join(base_path, 'model')
img_path = os.path.join(base_path, 'img')

# STEP 2 - LOAD MODEL
model_filename = 'model_rating.pkl'
scaler_filename = 'model_feat_scaling.pkl'
encoder_filename = 'model_feat_enc.pkl'

model_filepath = os.path.join(model_path, model_filename)
scaler_filepath = os.path.join(model_path, scaler_filename)
encoder_filepath = os.path.join(model_path, encoder_filename)

with open(model_filepath, "rb") as filename:
    model_rating = pickle.load(filename)

with open(scaler_filepath, "rb") as filename:
    scaler = pickle.load(filename)

with open(encoder_filepath, "rb") as filename:
    encoder = pickle.load(filename)

# STEP 3 - SET PAGE CONFIG
st.set_page_config(
    page_title = 'FIFA 2022 Player Rating\'s Prediction',
    layout = 'wide',
    initial_sidebar_state = 'auto',
    menu_items = {
        'About': '''
            ## FIFA 2022 Player Rating\'s Prediction
            ---
            _Made by Danu Purnomo_
            
            Predict rating of a football player based on FIFA 2022 players.
            '''
    }
)

# STEP 4 - CREATE BACKGROUND
def convert_img_to_base64(img_path):
    with open(img_path, 'rb') as image_file:
        encoded_string = base64.b64encode(image_file.read())
    return encoded_string

img_background_path = os.path.join(img_path, '01 - background.jpg')
# img_background_path = os.path.join(img_path, 'test-02.jpg')
encoded_string = convert_img_to_base64(img_background_path)
st.markdown(
    f"""
    <style>
    .stApp {{
        background-color: #dbe8ff;
    }}
    
    </style>
    """,
    unsafe_allow_html=True
)

# STEP 5 - SET TITLE AND OPENER
## STEP 5.1 - SET TITLE
text_title = '<h1 style="font-family:sans-serif; color:#051d69; text-align:center;">FIFA 2022 Player\'s Rating Predictions</h1>'
st.markdown(text_title, unsafe_allow_html=True)

## STEP 5.2 - SET OPENER
gif0 = '<div style="width:1080px"><iframe allow="fullscreen" align="center" frameBorder="0" height="720" src="https://giphy.com/embed/ICE7YmNTU9MatWIgxi/video" width=" 1380"></iframe></div>'
st.markdown(gif0, unsafe_allow_html=True)

# STEP 6 - SET PARAMETERS
st.markdown('---')
text_style = '<p style="font-family:sans-serif; color:#b41ff0; font-size: 30px;">Set Parameters</p>'
st.markdown(text_style, unsafe_allow_html=True)

# Attribute of a football player
#  0   Name               19260 non-null  object
#  1   Age                19260 non-null  int64 
#  2   Height             19260 non-null  int64 
#  3   Weight             19260 non-null  int64 
#  4   Price              19260 non-null  int64 
#  5   AttackingWorkRate  19260 non-null  object
#  6   DefensiveWorkRate  19260 non-null  object
#  7   PaceTotal          19260 non-null  int64 
#  8   ShootingTotal      19260 non-null  int64 
#  9   PassingTotal       19260 non-null  int64 
#  10  DribblingTotal     19260 non-null  int64 
#  11  DefendingTotal     19260 non-null  int64 
#  12  PhysicalityTotal   19260 non-null  int64 
#  13  Rating             19260 non-null  int64 

with st.form(key='form_parameters'):
    
    ## STEP 6.1 : Section 1
    header_section_1 = '<p style="font-family:sans-serif; color:#67b8f8; font-size: 20px;"> Personal Profile </p>'
    st.markdown(header_section_1, unsafe_allow_html=True)
    
    col1, col2, col3 = st.columns([1, 1, 1])
    st.markdown(f'<p style="background-color:#0066cc;color:#33ff33;font-size:24px;border-radius:2%;"></p>', unsafe_allow_html=True)
    with col1:
        img_personal_profile_path = os.path.join(img_path, '02 - personal profile.png')
        image = Image.open(img_personal_profile_path)
        st.image(image, width=350)
    
    with col2:
        col_name = st.text_input('Name', value='', help='Player\'s name')
        col_age = st.number_input('Age', min_value=14, max_value=60, value=22, step=1, help='Player\'s age. Default age is 22.')
        col_price = st.number_input('Price (EUR)', min_value=0, value=1000000, step=1, format='%d', help='Player\'s price. Default price is EUR 1,000,000.')
    
    with col3:
        col_height = st.number_input('Height (cm)', min_value=140, max_value=220, value=180, step=1, help='Player\'s height. Default height is 180 cm.')
        col_weight = st.number_input('Weight (kg)', min_value=40, max_value=120, value=70, step=1, help='Player\'s weight. Default weight is 70 kg.')

    ## STEP 6.2 : Section 2
    header_section_2 = '<p style="font-family:sans-serif; color:#67b8f8; font-size: 20px;"> Work Rate </p>'
    st.markdown('---')
    st.markdown(header_section_2, unsafe_allow_html=True)
    
    col1, col2, col3 = st.columns([1, 1, 1])
    with col1:
        img_work_rate_path = os.path.join(img_path, '03 - work rate.png')
        image = Image.open(img_work_rate_path)
        st.image(image, width=250)
    
    with col2:
        col_attacking_work_rate = st.selectbox('Attacking Work Rate', ['-', 'Low', 'Medium', 'High'], index=0, help='Player\'s desire to attack.')
        col_defensive_work_rate = st.selectbox('Defensive Work Rate', ['-', 'Low', 'Medium', 'High'], index=0, help='Player\'s desire to defend.')

    ## STEP 6.3 : Section 3
    header_section_3 = '<p style="font-family:sans-serif; color:#67b8f8; font-size: 20px;"> Ability </p>'
    st.markdown('---')
    st.markdown(header_section_3, unsafe_allow_html=True)

    col1, col2, col3 = st.columns([1, 1, 1])
    with col1:
        img_work_rate_path = os.path.join(img_path, '04 - ability.png')
        image = Image.open(img_work_rate_path)
        st.image(image, width=350)
    
    with col2:
        col_pace_total = st.number_input('Pace Total', min_value=0, max_value=100, value=50, step=1, help='How fast is a player.')
        col_shooting_total = st.number_input('Shooting Total', min_value=0, max_value=100, value=50, step=1, help='How good at kicking.')
        col_passing_total = st.number_input('Passing Total', min_value=0, max_value=100, value=50, step=1, help='How good at passing.')
    
    with col3:
        col_dribbling_total = st.number_input('Dribbling Total', min_value=0, max_value=100, value=50, step=1, help='How good at dribbling.')
        col_defending_total = st.number_input('Defending Total', min_value=0, max_value=100, value=50, step=1, help='How good at defending.')
        col_physicality_total = st.number_input('Physicality Total', min_value=0, max_value=100, value=50, step=1, help='How good is a player\'s physique.')

    ## STEP 6.4 : Section 4
    st.markdown('<br><br>', unsafe_allow_html=True)
    col1, col2, col3 = st.columns([3, 1, 3])
    with col2:
        submitted = st.form_submit_button('Predict')

# STEP 7 - PREDICT NEW DATA
## STEP 7.1 - Create DataFrame for New Data
## `new_data` is for inference meanwhile `new_data_for_radar_plot` is for plot line_polar.

new_data = {
    'Name': [col_name],
    'Age': [col_age],
    'Height': [col_height],
    'Weight': [col_weight],
    'Price': [col_price],
    'AttackingWorkRate': [col_attacking_work_rate],
    'DefensiveWorkRate': [col_defensive_work_rate],
    'PaceTotal': [col_pace_total],
    'ShootingTotal': [col_shooting_total],
    'PassingTotal': [col_passing_total],
    'DribblingTotal': [col_dribbling_total],
    'DefendingTotal': [col_defending_total],
    'PhysicalityTotal': [col_physicality_total]
}

new_data_for_radar_plot = {
    'PaceTotal': [col_pace_total],
    'ShootingTotal': [col_shooting_total],
    'PassingTotal': [col_passing_total],
    'DribblingTotal': [col_dribbling_total],
    'DefendingTotal': [col_defending_total],
    'PhysicalityTotal': [col_physicality_total]
}

new_data = pd.DataFrame.from_dict(new_data)
new_data_for_radar_plot = pd.DataFrame.from_dict(new_data_for_radar_plot)
# st.write(new_data)
print('New Data : ', new_data)

result_section = st.empty()
if submitted : 
    ## STEP 7.2 - Split Numerical Columns and Categorical Columns
    num_columns = ['Age', 'Height', 'Weight', 'Price', 'PaceTotal', 'ShootingTotal', 'PassingTotal', 'DribblingTotal', 'DefendingTotal', 'PhysicalityTotal']
    cat_columns = ['AttackingWorkRate', 'DefensiveWorkRate']

    new_data_num = new_data[num_columns]
    new_data_cat = new_data[cat_columns]

    ## STEP 7.3 - Feature Scaling and Feature Encoding
    new_data_num_scaled = scaler.transform(new_data_num)
    new_data_cat_encoded = encoder.transform(new_data_cat)

    ## STEP 7.4 - Concatenate between Numerical Columns and Categorical Columns
    new_data_final = np.concatenate([new_data_num_scaled, new_data_cat_encoded], axis=1)

    ## STEP 7.5 - Predict using Linear Regression
    y_pred_inf = model_rating.predict(new_data_final)
    print(type(y_pred_inf))

    ## STEP 7.6 - Display Prediction
    result_section.empty()
    bar = st.progress(0)
    for i in range(100):
        bar.progress(i + 1)
        time.sleep(0.01)
    bar.empty()

    with result_section.container():
        st.markdown('<br><br>', unsafe_allow_html=True)

        col1, col2, col3, col4, col5 = st.columns([0.5, 2, 1, 2, 1])
        with col2:
            img_personal_profile_path = os.path.join(img_path, '05 - person rear.png')
            image = Image.open(img_personal_profile_path)
            st.image(image, width=350)

        with col3:
            st.markdown('<br><br><br><br>', unsafe_allow_html=True)
            player_name = '<h1 style="font-family:helvetica; color:#fff9ac; text-align:center"> ' + col_name + ' </h1>'
            st.markdown(player_name, unsafe_allow_html=True)

            player_rating_pred = '<p style="font-family:helvetica; color:#494d55; font-size:100px; text-align:center"> <b>' + str(int(y_pred_inf)) + ' </p>'
            st.markdown(player_rating_pred, unsafe_allow_html=True)

        with col4:
            st.markdown('<br><br>', unsafe_allow_html=True)
            skill_total_fig = px.line_polar(
                r = new_data_for_radar_plot.loc[0].values, 
                theta = new_data_for_radar_plot.columns, 
                line_close = True, 
                range_r = [0, 100],
                color_discrete_sequence = ['#FFF9AC'],
                # hover_name=['PaceTotal', '1', '2', '4', '5', '6'],
                template='plotly_dark')
            skill_total_fig.update_traces(fill='toself')
            skill_total_fig.update_layout({
                'plot_bgcolor': 'rgba(255, 0, 0, 0)',
                'paper_bgcolor': 'rgba(0, 0, 0, 0)',
                'font_size': 19
                })
            st.write(skill_total_fig)
    
st.write('''Source images : 
[link](https://www.vecteezy.com/vector-art/5129950-football-player-figure-line-art-human-action-on-motion-lines-controlling-the-ball-with-chest),
[link](https://www.vecteezy.com/vector-art/5939693-football-player-figure-line-art-human-action-on-motion-lines-kicking-ball),
[link](https://www.vecteezy.com/vector-art/5129956-football-player-figure-line-art-human-action-on-motion-lines-kicking-ball),
[link](https://www.dreamstime.com/young-african-soccer-player-man-studio-isolated-white-background-silhouette-shadow-young-african-soccer-player-man-image199265151)
''')