Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -75,14 +75,14 @@ def build_faiss_index(dataset: pd.DataFrame) -> Tuple[faiss.IndexFlatIP, np.ndar
|
|
75 |
|
76 |
|
77 |
def compute_correlations_faiss(index, book_titles: List[str],
|
78 |
-
target_book, ) -> pd.DataFrame:
|
79 |
print(target_book, type(target_book))
|
80 |
emb = create_embedding([target_book[0]])
|
81 |
# target_vector = book_titles.index(emb)
|
82 |
|
83 |
|
84 |
# Perform the search
|
85 |
-
k =
|
86 |
similarities, I = index.search(emb.astype('float16'), k)
|
87 |
print(similarities, I)
|
88 |
|
@@ -143,9 +143,9 @@ def recommend_books(target_book: str, num_recommendations: int = 10) -> str:
|
|
143 |
closest_match = process.extractOne(target_book, book_titles)
|
144 |
|
145 |
|
146 |
-
correlations = compute_correlations_faiss(faiss_index, list(dataset["Book-Title"]), closest_match)
|
147 |
|
148 |
-
recommendations =
|
149 |
|
150 |
result = f"Top {num_recommendations} recommendations for '{target_book}':\n\n"
|
151 |
for i, (_, row) in enumerate(recommendations.iterrows(), 1):
|
|
|
75 |
|
76 |
|
77 |
def compute_correlations_faiss(index, book_titles: List[str],
|
78 |
+
target_book, num_recommendations) -> pd.DataFrame:
|
79 |
print(target_book, type(target_book))
|
80 |
emb = create_embedding([target_book[0]])
|
81 |
# target_vector = book_titles.index(emb)
|
82 |
|
83 |
|
84 |
# Perform the search
|
85 |
+
k = num_recommendations
|
86 |
similarities, I = index.search(emb.astype('float16'), k)
|
87 |
print(similarities, I)
|
88 |
|
|
|
143 |
closest_match = process.extractOne(target_book, book_titles)
|
144 |
|
145 |
|
146 |
+
correlations = compute_correlations_faiss(faiss_index, list(dataset["Book-Title"]), closest_match, num_recommendations)
|
147 |
|
148 |
+
recommendations = dataset[dataset["Book-Title"] != target_book].head(num_recommendations)
|
149 |
|
150 |
result = f"Top {num_recommendations} recommendations for '{target_book}':\n\n"
|
151 |
for i, (_, row) in enumerate(recommendations.iterrows(), 1):
|