danschnurp commited on
Commit
5f00df8
·
verified ·
1 Parent(s): 2867f8f

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -74,7 +74,7 @@ def build_faiss_index(dataset: pd.DataFrame) -> Tuple[faiss.IndexFlatIP, np.ndar
74
  return index
75
 
76
 
77
- def compute_correlations_faiss(index: faiss.IndexFlatIP, book_titles: List[str],
78
  target_book, ) -> pd.DataFrame:
79
  print(target_book, type(target_book))
80
  emb = create_embedding([target_book[0]])
@@ -84,6 +84,7 @@ def compute_correlations_faiss(index: faiss.IndexFlatIP, book_titles: List[str],
84
  # Perform the search
85
  k = len(book_titles) # Search for all books
86
  similarities, I = index.search(emb.astype('float16'), k)
 
87
 
88
  # # Reduce database and query vectors to 2D for visualization
89
  # pca = PCA(n_components=2)
@@ -142,7 +143,7 @@ def recommend_books(target_book: str, num_recommendations: int = 10) -> str:
142
  closest_match = process.extractOne(target_book, book_titles)
143
 
144
 
145
- correlations = compute_correlations_faiss(faiss_index, book_titles, closest_match)
146
 
147
  recommendations = correlations[correlations['book'] != target_book].head(num_recommendations)
148
 
 
74
  return index
75
 
76
 
77
+ def compute_correlations_faiss(index, book_titles: List[str],
78
  target_book, ) -> pd.DataFrame:
79
  print(target_book, type(target_book))
80
  emb = create_embedding([target_book[0]])
 
84
  # Perform the search
85
  k = len(book_titles) # Search for all books
86
  similarities, I = index.search(emb.astype('float16'), k)
87
+ print(similarities, I)
88
 
89
  # # Reduce database and query vectors to 2D for visualization
90
  # pca = PCA(n_components=2)
 
143
  closest_match = process.extractOne(target_book, book_titles)
144
 
145
 
146
+ correlations = compute_correlations_faiss(faiss_index, list(dataset["Book-Title"]), closest_match)
147
 
148
  recommendations = correlations[correlations['book'] != target_book].head(num_recommendations)
149