File size: 8,120 Bytes
53f5531
b81a27d
 
53f5531
 
 
 
 
 
 
 
2197ffd
 
53f5531
 
 
 
 
 
 
 
2197ffd
 
 
 
 
 
1e39d45
2197ffd
53f5531
2197ffd
53f5531
2197ffd
53f5531
 
 
 
 
 
 
 
2197ffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20f654b
 
2197ffd
 
 
 
 
 
 
 
 
 
53f5531
2197ffd
53f5531
2197ffd
53f5531
 
6c4addd
aeafac5
9e1ea5c
aeafac5
2197ffd
 
 
 
6c4addd
2197ffd
 
6c4addd
 
 
 
 
 
 
 
 
 
 
 
 
 
53f5531
6c4addd
 
53f5531
 
 
 
6c4addd
53f5531
60bf80e
53f5531
 
2197ffd
 
b81a27d
53f5531
2197ffd
 
 
 
 
 
 
 
 
 
 
 
 
 
53f5531
 
aeafac5
60bf80e
53f5531
 
 
0711e1b
 
506f53d
0711e1b
53f5531
 
 
aeafac5
53f5531
 
6c4addd
9ad86e8
506f53d
9ad86e8
0711e1b
 
 
 
 
 
9ad86e8
53f5531
 
2497bf3
502f045
2497bf3
 
9ad86e8
 
 
60bf80e
e6f6978
2497bf3
502f045
9ad86e8
b8a58f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53f5531
d465234
aeafac5
53f5531
d465234
53f5531
 
d465234
53f5531
5e9caa2
 
 
 
082b8e8
5e9caa2
 
 
d465234
aeafac5
53f5531
 
aeafac5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import re

import pandas as pd
import numpy as np

from typing import List, Tuple
import faiss
from faiss import write_index, read_index
import gradio as gr
from fuzzywuzzy import process
from tqdm import tqdm
from transformers import BertTokenizerFast, BertModel, AutoTokenizer, AutoModel

# Global variables to store loaded data
dataset = None
faiss_index = None
normalized_data = None
book_titles = None


def is_valid_isbn(isbn):
    pattern = r'^(?:(?:978|979)\d{10}|\d{9}[0-9X])$'
    return bool(re.match(pattern, isbn))



def load_data(ratings_path, books_path) -> Tuple[pd.DataFrame, pd.DataFrame]:
    ratings = pd.read_csv(ratings_path, encoding='cp1251', sep=';', on_bad_lines='skip')
    ratings = ratings[ratings['Book-Rating'] != 0]

    books = pd.read_csv(books_path, encoding='cp1251', sep=';', on_bad_lines='skip')

    return ratings, books


def preprocess_data(ratings: pd.DataFrame, books: pd.DataFrame) -> pd.DataFrame:
    dataset = pd.merge(ratings, books, on=['ISBN'])
    return dataset.apply(lambda x: x.str.lower() if x.dtype == 'object' else x)


def create_embedding(dataset):
    model_name = "mrm8488/bert-tiny-finetuned-sms-spam-detection"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModel.from_pretrained(model_name)
    print("creating tokens")
    tokens = [tokenizer(i, padding="max_length", truncation=True, max_length=10, return_tensors='pt')
              for i in dataset]
    print("\ncreating embedding\n")
    emb = []
    for i in tqdm(tokens):
        emb.append(model(**i,)["last_hidden_state"].detach().numpy().squeeze().reshape(-1))
    # Normalize the data
    normalized_data = emb / np.linalg.norm(emb)
    return normalized_data


def build_faiss_index(dataset: pd.DataFrame) -> Tuple[faiss.IndexFlatIP, np.ndarray]:
    if os.path.exists("books.index"):
        return read_index("books.index")

    dataset["embedding"] = create_embedding(dataset["Book-Title"])
    print("creating index")
    normalized_data = dataset["embedding"]
    # Create a Faiss index
    dimension = normalized_data.shape[-1]
    index = faiss.IndexFlatIP(dimension)

    # Add vectors to the index
    index.add(normalized_data.astype('float16'))

    write_index(index, "data/books.index")

    return index


def compute_correlations_faiss(index: faiss.IndexFlatIP, book_titles: List[str],
                               target_book, ) -> pd.DataFrame:
    print(target_book, type(target_book))
    emb = create_embedding([target_book[0]])
    # target_vector = book_titles.index(emb)


    # Perform the search
    k = len(book_titles)  # Search for all books
    similarities, I = index.search(emb.astype('float16'), k)

    # # Reduce database and query vectors to 2D for visualization
    # pca = PCA(n_components=2)
    # reduced_db = pca.fit_transform(data)
    # reduced_query = pca.transform(target_vector)
    #
    # # Scatter plot
    # plt.scatter(reduced_db[:, 0], reduced_db[:, 1], label='Database Vectors', alpha=0.5)
    # plt.scatter(reduced_query[:, 0], reduced_query[:, 1], label='Query Vectors', marker='X', color='red')
    # plt.legend()
    # plt.title("PCA Projection of IndexFlatIP Vectors")
    # plt.show()



    corr_df = pd.DataFrame({
        'book': [book_titles[i] for i in I[0]],
        'corr': similarities[0]
    })
    return corr_df.sort_values('corr', ascending=False)



def load_and_prepare_data():
    global dataset, faiss_index, normalized_data, book_titles, ratings_by_isbn

    # Download data files from Hugging Face
    ratings = "BX-Book-Ratings.csv"
    books = "BX-Books.csv"
    ratings, books = load_data(ratings, books)
    dataset = preprocess_data(ratings, books)
    ratings = ratings[ratings['ISBN'].apply(is_valid_isbn)]
    dataset = dataset[dataset['ISBN'].apply(is_valid_isbn)]

    ratings_by_isbn = ratings.drop(columns="User-ID")[ratings.drop(columns="User-ID")["Book-Rating"] > 0]
    ratings_by_isbn = ratings_by_isbn.groupby('ISBN')["Book-Rating"].mean().reset_index()
    ratings_by_isbn = ratings_by_isbn.drop_duplicates(subset=['ISBN'])
    dataset = dataset.drop(columns=["User-ID", "Book-Rating"])
    dataset = dataset[dataset['ISBN'].isin(ratings_by_isbn['ISBN'])]
    dataset = dataset.drop_duplicates(subset=['ISBN'])
    dataset = preprocess_data(dataset, ratings_by_isbn)
    # Build Faiss index
    faiss_index = build_faiss_index(dataset)

    book_titles = dataset["Book-Title"]


def recommend_books(target_book: str, num_recommendations: int = 10) -> str:
    global dataset, faiss_index, normalized_data, book_titles, ratings_by_isbn

    if dataset is None or faiss_index is None or normalized_data is None or book_titles is None:
        load_and_prepare_data()
        dataset['ISBN'] = dataset['ISBN'].str.strip()
        print("Before dropping duplicates:", len(dataset))
        dataset = dataset.drop_duplicates(subset=['ISBN'])
        print("After dropping duplicates:", len(dataset))

    target_book = target_book.lower()
    # Fuzzy match the input to the closest book title
    closest_match = process.extractOne(target_book, book_titles)


    correlations = compute_correlations_faiss(faiss_index, book_titles, closest_match)

    recommendations = correlations[correlations['book'] != target_book]

    # Create a mask of unique ISBNs
    unique_mask = dataset.duplicated(subset=['ISBN'], keep='first') == False

    # Apply the mask
    dataset = dataset[unique_mask]

    recommendations = recommendations.head(num_recommendations)

    result = f"Top {num_recommendations} recommendations for '{target_book}':\n\n"
    dups = []
    result += "\n\n".join([
        f"{idx, dups.append(dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[0])}. "
        f"Title: {dataset.loc[dataset['Book-Title'] == row['book'], 'Book-Title'].values[0]}, "
            f"Author: {dataset.loc[dataset['Book-Title'] == row['book'], 'Book-Author'].values[0]}, "
    f"Year: {dataset.loc[dataset['Book-Title'] == row['book'], 'Year-Of-Publication'].values[0]}, "
    f"Publisher: {dataset.loc[dataset['Book-Title'] == row['book'], 'Publisher'].values[0]}, "
        f"ISBN: {dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[0]}, "
        f"Rating: {ratings_by_isbn.loc[ratings_by_isbn['ISBN'] == dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[0], 'Book-Rating'].values[0]}"
        for idx, (_, row) in enumerate(recommendations.iterrows(), 1) if dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[0] not in dups
    ])
    # "ISBN";"Book-Title";"Book-Author";"Year-Of-Publication";"Publisher";"Image-URL-S"

    result_df = pd.DataFrame([
        {
            "Rank": idx,
            "Title": dataset.loc[dataset['Book-Title'] == row['book'], 'Book-Title'].values[0],
            "Author": dataset.loc[dataset['Book-Title'] == row['book'], 'Book-Author'].values[0],
            "Year": dataset.loc[dataset['Book-Title'] == row['book'], 'Year-Of-Publication'].values[0],
            "Publisher": dataset.loc[dataset['Book-Title'] == row['book'], 'Publisher'].values[0],
            "ISBN": dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[0],
            "Rating": ratings_by_isbn.loc[
                ratings_by_isbn['ISBN'] == dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[
                    0], 'Book-Rating'].values[0]
        }
        for idx, (_, row) in enumerate(recommendations.iterrows(), 1)
    ])

    return result_df


# Create Gradio interface
iface = gr.Interface(
    fn=recommend_books,
    inputs=[
        gr.Textbox(label="Enter a book title"),
        gr.Slider(minimum=1, maximum=20, step=1, label="Number of recommendations", value=10)
    ],
    outputs=[
        gr.Dataframe(
            headers=["Rank", "Title", "Author", "Year", "Publisher", "ISBN", "Rating"],
            type="pandas",

        ),
        gr.JSON(label="Detailed Recommendations")
    ],
    title="Book Recommender",
    description="Enter a book title to get recommendations based on user ratings and book similarities."
)

# Launch the app
iface.launch()