Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +85 -44
- requirements.txt +4 -1
app.py
CHANGED
@@ -7,6 +7,8 @@ import faiss
|
|
7 |
from faiss import write_index, read_index
|
8 |
import gradio as gr
|
9 |
from fuzzywuzzy import process
|
|
|
|
|
10 |
|
11 |
# Global variables to store loaded data
|
12 |
dataset = None
|
@@ -15,10 +17,18 @@ normalized_data = None
|
|
15 |
book_titles = None
|
16 |
|
17 |
|
18 |
-
def
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
ratings = ratings[ratings['Book-Rating'] != 0]
|
|
|
21 |
books = pd.read_csv(books_path, encoding='cp1251', sep=';', on_bad_lines='skip')
|
|
|
22 |
return ratings, books
|
23 |
|
24 |
|
@@ -27,60 +37,95 @@ def preprocess_data(ratings: pd.DataFrame, books: pd.DataFrame) -> pd.DataFrame:
|
|
27 |
return dataset.apply(lambda x: x.str.lower() if x.dtype == 'object' else x)
|
28 |
|
29 |
|
30 |
-
def
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
34 |
|
35 |
-
|
36 |
-
ratings_data = data.loc[data['Book-Title'].isin(books_to_compare), ['User-ID', 'Book-Rating', 'Book-Title']]
|
37 |
-
ratings_mean = ratings_data.groupby(['User-ID', 'Book-Title'])['Book-Rating'].mean().reset_index()
|
38 |
-
return ratings_mean.pivot(index='User-ID', columns='Book-Title', values='Book-Rating').fillna(0)
|
39 |
|
40 |
|
41 |
-
def
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
index_file = "books.index"
|
46 |
-
if os.path.exists(index_file):
|
47 |
-
return read_index(index_file), normalized_data
|
48 |
|
49 |
-
dimension = normalized_data.shape[1]
|
50 |
-
index = faiss.IndexFlatIP(dimension)
|
51 |
-
index.add(normalized_data.astype('float32'))
|
52 |
-
write_index(index, index_file)
|
53 |
-
return index, normalized_data
|
54 |
-
|
55 |
-
|
56 |
-
def compute_correlations_faiss(index: faiss.IndexFlatIP, data: np.ndarray, book_titles: List[str],
|
57 |
-
target_book: str) -> pd.DataFrame:
|
58 |
-
target_index = book_titles.index(target_book)
|
59 |
-
target_vector = data[target_index].reshape(1, -1)
|
60 |
-
k = len(book_titles)
|
61 |
-
similarities, I = index.search(target_vector.astype('float32'), k)
|
62 |
-
avg_ratings = np.mean(data, axis=1)
|
63 |
corr_df = pd.DataFrame({
|
64 |
'book': [book_titles[i] for i in I[0]],
|
65 |
-
'corr': similarities[0]
|
66 |
-
'avg_rating': avg_ratings[I[0]]
|
67 |
})
|
68 |
return corr_df.sort_values('corr', ascending=False)
|
69 |
|
70 |
|
|
|
71 |
def load_and_prepare_data():
|
72 |
global dataset, faiss_index, normalized_data, book_titles
|
73 |
|
74 |
# Download data files from Hugging Face
|
75 |
-
|
76 |
-
|
77 |
|
78 |
-
ratings, books = load_data(ratings_file, books_file)
|
79 |
dataset = preprocess_data(ratings, books)
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
|
86 |
def recommend_books(target_book: str, num_recommendations: int = 10) -> str:
|
@@ -93,13 +138,9 @@ def recommend_books(target_book: str, num_recommendations: int = 10) -> str:
|
|
93 |
# Fuzzy match the input to the closest book title
|
94 |
closest_match, score = process.extractOne(target_book, book_titles)
|
95 |
|
96 |
-
if score < 50: #
|
97 |
return f"No close match found for '{target_book}'. Please try a different title."
|
98 |
|
99 |
-
if closest_match != target_book:
|
100 |
-
result = f"Closest match: '{closest_match}' (similarity: {score}%)\n\n"
|
101 |
-
else:
|
102 |
-
result = ""
|
103 |
|
104 |
correlations = compute_correlations_faiss(faiss_index, normalized_data, book_titles, closest_match)
|
105 |
|
@@ -125,4 +166,4 @@ iface = gr.Interface(
|
|
125 |
)
|
126 |
|
127 |
# Launch the app
|
128 |
-
iface.launch(
|
|
|
7 |
from faiss import write_index, read_index
|
8 |
import gradio as gr
|
9 |
from fuzzywuzzy import process
|
10 |
+
from tqdm import tqdm
|
11 |
+
from transformers import BertTokenizerFast, BertModel, AutoTokenizer, AutoModel
|
12 |
|
13 |
# Global variables to store loaded data
|
14 |
dataset = None
|
|
|
17 |
book_titles = None
|
18 |
|
19 |
|
20 |
+
def is_valid_isbn(isbn):
|
21 |
+
pattern = r'^(?:(?:978|979)\d{10}|\d{9}[0-9X])$'
|
22 |
+
return bool(re.match(pattern, isbn))
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
def load_data(ratings_path: Path, books_path: Path) -> Tuple[pd.DataFrame, pd.DataFrame]:
|
27 |
+
ratings = pd.read_csv(ratings_path, encoding='cp1251', sep=';', on_bad_lines='skip')
|
28 |
ratings = ratings[ratings['Book-Rating'] != 0]
|
29 |
+
|
30 |
books = pd.read_csv(books_path, encoding='cp1251', sep=';', on_bad_lines='skip')
|
31 |
+
|
32 |
return ratings, books
|
33 |
|
34 |
|
|
|
37 |
return dataset.apply(lambda x: x.str.lower() if x.dtype == 'object' else x)
|
38 |
|
39 |
|
40 |
+
def create_embedding(dataset):
|
41 |
+
model_name = "mrm8488/bert-tiny-finetuned-sms-spam-detection"
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
43 |
+
model = AutoModel.from_pretrained(model_name)
|
44 |
+
print("creating tokens")
|
45 |
+
tokens = [tokenizer(i, padding="max_length", truncation=True, max_length=10, return_tensors='pt')
|
46 |
+
for i in dataset]
|
47 |
+
print("\ncreating embedding\n")
|
48 |
+
emb = []
|
49 |
+
for i in tqdm(tokens):
|
50 |
+
emb.append(model(**i,)["last_hidden_state"].detach().numpy().squeeze().reshape(-1))
|
51 |
+
# Normalize the data
|
52 |
+
normalized_data = emb / np.linalg.norm(emb)
|
53 |
+
return normalized_data
|
54 |
+
|
55 |
+
|
56 |
+
def build_faiss_index(dataset: pd.DataFrame) -> Tuple[faiss.IndexFlatIP, np.ndarray]:
|
57 |
+
if os.path.exists("data/books.index"):
|
58 |
+
return read_index("data/books.index")
|
59 |
+
|
60 |
+
dataset["embedding"] = create_embedding(dataset["Book-Title"])
|
61 |
+
print("creating index")
|
62 |
+
normalized_data = dataset["embedding"]
|
63 |
+
# Create a Faiss index
|
64 |
+
dimension = normalized_data.shape[-1]
|
65 |
+
index = faiss.IndexFlatIP(dimension)
|
66 |
+
|
67 |
+
# Add vectors to the index
|
68 |
+
index.add(normalized_data.astype('float16'))
|
69 |
|
70 |
+
write_index(index, "data/books.index")
|
71 |
|
72 |
+
return index
|
|
|
|
|
|
|
73 |
|
74 |
|
75 |
+
def compute_correlations_faiss(index: faiss.IndexFlatIP, book_titles: List[str],
|
76 |
+
target_book: str, ) -> pd.DataFrame:
|
77 |
+
emb = create_embedding([target_book])
|
78 |
+
# target_vector = book_titles.index(emb)
|
79 |
+
|
80 |
+
|
81 |
+
# Perform the search
|
82 |
+
k = len(book_titles) # Search for all books
|
83 |
+
similarities, I = index.search(emb.astype('float16'), k)
|
84 |
+
|
85 |
+
# # Reduce database and query vectors to 2D for visualization
|
86 |
+
# pca = PCA(n_components=2)
|
87 |
+
# reduced_db = pca.fit_transform(data)
|
88 |
+
# reduced_query = pca.transform(target_vector)
|
89 |
+
#
|
90 |
+
# # Scatter plot
|
91 |
+
# plt.scatter(reduced_db[:, 0], reduced_db[:, 1], label='Database Vectors', alpha=0.5)
|
92 |
+
# plt.scatter(reduced_query[:, 0], reduced_query[:, 1], label='Query Vectors', marker='X', color='red')
|
93 |
+
# plt.legend()
|
94 |
+
# plt.title("PCA Projection of IndexFlatIP Vectors")
|
95 |
+
# plt.show()
|
96 |
+
|
97 |
|
|
|
|
|
|
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
corr_df = pd.DataFrame({
|
100 |
'book': [book_titles[i] for i in I[0]],
|
101 |
+
'corr': similarities[0]
|
|
|
102 |
})
|
103 |
return corr_df.sort_values('corr', ascending=False)
|
104 |
|
105 |
|
106 |
+
|
107 |
def load_and_prepare_data():
|
108 |
global dataset, faiss_index, normalized_data, book_titles
|
109 |
|
110 |
# Download data files from Hugging Face
|
111 |
+
ratings = "BX-Book-Ratings.csv"
|
112 |
+
books = "BX-Books.csv"
|
113 |
|
|
|
114 |
dataset = preprocess_data(ratings, books)
|
115 |
+
ratings = ratings[ratings['ISBN'].apply(is_valid_isbn)]
|
116 |
+
dataset = dataset[dataset['ISBN'].apply(is_valid_isbn)]
|
117 |
+
|
118 |
+
ratings_by_isbn = ratings.drop(columns="User-ID")[ratings.drop(columns="User-ID")["Book-Rating"] > 0]
|
119 |
+
ratings_by_isbn = ratings_by_isbn.groupby('ISBN')["Book-Rating"].mean().reset_index()
|
120 |
+
ratings_by_isbn = ratings_by_isbn.drop_duplicates(subset=['ISBN'])
|
121 |
+
dataset = dataset.drop(columns=["User-ID", "Book-Rating"])
|
122 |
+
dataset = dataset[dataset['ISBN'].isin(ratings_by_isbn['ISBN'])]
|
123 |
+
dataset = dataset.drop_duplicates(subset=['ISBN'])
|
124 |
+
dataset = preprocess_data(dataset, ratings_by_isbn)
|
125 |
+
# Build Faiss index
|
126 |
+
faiss_index = build_faiss_index(dataset)
|
127 |
+
|
128 |
+
book_titles = dataset["Book-Title"]
|
129 |
|
130 |
|
131 |
def recommend_books(target_book: str, num_recommendations: int = 10) -> str:
|
|
|
138 |
# Fuzzy match the input to the closest book title
|
139 |
closest_match, score = process.extractOne(target_book, book_titles)
|
140 |
|
141 |
+
if score < 50: # threshold
|
142 |
return f"No close match found for '{target_book}'. Please try a different title."
|
143 |
|
|
|
|
|
|
|
|
|
144 |
|
145 |
correlations = compute_correlations_faiss(faiss_index, normalized_data, book_titles, closest_match)
|
146 |
|
|
|
166 |
)
|
167 |
|
168 |
# Launch the app
|
169 |
+
iface.launch()
|
requirements.txt
CHANGED
@@ -3,7 +3,10 @@
|
|
3 |
faiss-cpu
|
4 |
pandas
|
5 |
numpy
|
|
|
6 |
gradio
|
7 |
huggingface_hub
|
8 |
fuzzywuzzy
|
9 |
-
python-Levenshtein
|
|
|
|
|
|
3 |
faiss-cpu
|
4 |
pandas
|
5 |
numpy
|
6 |
+
|
7 |
gradio
|
8 |
huggingface_hub
|
9 |
fuzzywuzzy
|
10 |
+
python-Levenshtein
|
11 |
+
transformers
|
12 |
+
tqdm
|