Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import streamlit as st | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain_core.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from langchain_community.llms import HuggingFacePipeline | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
from dotenv import load_dotenv | |
# Set Streamlit page configuration | |
st.set_page_config(page_title="Chat with Notes and AI", page_icon=":books:", layout="wide") | |
# Load environment variables | |
load_dotenv() | |
# Optimized pipeline setup | |
def load_pipeline(): | |
# Use a smaller model for faster performance | |
model_name = "databricks/dolly-v2-1b" # Switch to a lighter model | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float32, # Use float32 for CPU compatibility | |
device_map="auto", # Automatically map devices | |
trust_remote_code=True | |
) | |
# Return text-generation pipeline with full-text output | |
return pipeline( | |
task="text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
torch_dtype=torch.float32, # Ensure compatibility with CPU | |
device_map="auto", | |
return_full_text=True, | |
max_new_tokens=100 # Limit response length | |
) | |
# Initialize pipeline | |
generate_text = load_pipeline() | |
# LangChain Integration | |
hf_pipeline = HuggingFacePipeline(pipeline=generate_text) | |
# Templates for prompts | |
prompt = PromptTemplate(input_variables=["instruction"], template="{instruction}") | |
prompt_with_context = PromptTemplate( | |
input_variables=["instruction", "context"], | |
template="{instruction}\n\nInput:\n{context}" | |
) | |
# LangChain LLM chains | |
llm_chain = LLMChain(llm=hf_pipeline, prompt=prompt) | |
llm_context_chain = LLMChain(llm=hf_pipeline, prompt=prompt_with_context) | |
# Extract content from .txt files | |
def get_text_files_content(folder): | |
text = "" | |
for filename in os.listdir(folder): | |
if filename.endswith('.txt'): | |
with open(os.path.join(folder, filename), 'r', encoding='utf-8') as file: | |
text += file.read() + "\n" | |
return text | |
# Convert text into chunks for vectorization | |
def get_chunks(raw_text): | |
from langchain.text_splitter import CharacterTextSplitter | |
text_splitter = CharacterTextSplitter( | |
separator="\n", | |
chunk_size=500, # Smaller chunks for faster processing | |
chunk_overlap=50 # Minimal overlap | |
) | |
return text_splitter.split_text(raw_text) | |
# Create FAISS vectorstore for embeddings | |
def get_vectorstore(chunks): | |
embeddings = HuggingFaceEmbeddings( | |
model_name="sentence-transformers/all-MiniLM-L6-v2", # Lightweight embeddings | |
model_kwargs={'device': 'cpu'} # Ensure embeddings run on CPU | |
) | |
return FAISS.from_texts(texts=chunks, embedding=embeddings) | |
# Handle user queries | |
def handle_question(question, vectorstore=None): | |
if vectorstore: | |
# Retrieve the most relevant chunk | |
documents = vectorstore.similarity_search(question, k=1) # Retrieve fewer chunks | |
context = "\n".join([doc.page_content for doc in documents])[:500] # Short context for efficiency | |
if context: | |
return llm_context_chain.predict(instruction=question, context=context).strip() | |
# Fallback to instruction-only chain if no context | |
return llm_chain.predict(instruction=question).strip() | |
def main(): | |
st.title("Chat with Notes :books:") | |
# Session state for vectorstore | |
if "vectorstore" not in st.session_state: | |
st.session_state.vectorstore = None | |
# Data folders | |
data_folder = "data" # Folder for Current Affairs | |
essay_folder = "essays" # Folder for Essays | |
# Content type selection | |
content_type = st.sidebar.radio("Select Content Type:", ["Current Affairs", "Essays"]) | |
# Subjects based on content type | |
if content_type == "Current Affairs": | |
subjects = [f for f in os.listdir(data_folder) if os.path.isdir(os.path.join(data_folder, f))] if os.path.exists(data_folder) else [] | |
else: | |
subjects = [f.replace(".txt", "") for f in os.listdir(essay_folder) if f.endswith('.txt')] if os.path.exists(essay_folder) else [] | |
# Subject selection | |
selected_subject = st.sidebar.selectbox("Select a Subject:", subjects) | |
# Load content based on selection | |
raw_text = "" | |
if content_type == "Current Affairs" and selected_subject: | |
subject_folder = os.path.join(data_folder, selected_subject) | |
raw_text = get_text_files_content(subject_folder) | |
elif content_type == "Essays" and selected_subject: | |
subject_file = os.path.join(essay_folder, f"{selected_subject}.txt") | |
if os.path.exists(subject_file): | |
with open(subject_file, "r", encoding="utf-8") as file: | |
raw_text = file.read() | |
# Display preview and create vectorstore | |
if raw_text: | |
st.subheader("Preview of Notes") | |
st.text_area("Preview Content:", value=raw_text[:1000], height=300, disabled=True) | |
if "vectorstore" not in st.session_state or st.session_state.vectorstore is None: | |
chunks = get_chunks(raw_text) | |
st.session_state.vectorstore = get_vectorstore(chunks) | |
else: | |
st.warning("No content available for the selected subject.") | |
# Question and response | |
st.subheader("Ask Your Question") | |
question = st.text_input("Ask a question about your selected subject:") | |
if question: | |
if st.session_state.vectorstore: | |
response = handle_question(question, st.session_state.vectorstore) | |
st.subheader("Answer:") | |
st.write(response or "No response found.") | |
else: | |
st.warning("Please load the content for the selected subject before asking a question.") | |
if __name__ == "__main__": | |
main() | |