Spaces:
Sleeping
Sleeping
File size: 6,025 Bytes
5102822 49bb688 0401909 74d69bb 5102822 ecf2148 5102822 14e71a0 5102822 14e71a0 8e786ac 74d69bb c85425f 14e71a0 74d69bb 5102822 14e71a0 5102822 c85425f 14e71a0 5102822 14e71a0 5102822 14e71a0 5102822 14e71a0 8e786ac 14e71a0 5102822 14e71a0 5102822 14e71a0 5102822 14e71a0 5102822 0401909 5102822 14e71a0 5102822 8e786ac 5102822 14e71a0 5102822 14e71a0 5102822 8e786ac 5102822 14e71a0 5102822 14e71a0 8e786ac 14e71a0 c85425f 5102822 14e71a0 c85425f 14e71a0 5102822 0d30433 5102822 14e71a0 5102822 14e71a0 51fcb96 14e71a0 5991ba4 5102822 14e71a0 5991ba4 8e786ac 14e71a0 8e786ac 51fcb96 14e71a0 5102822 14e71a0 0d30433 5991ba4 14e71a0 5991ba4 0d30433 14e71a0 0d30433 14e71a0 0401909 8e786ac 14e71a0 5991ba4 14e71a0 0d30433 5102822 0d30433 14e71a0 5102822 14e71a0 5102822 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import os
import torch
import streamlit as st
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_core.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_community.llms import HuggingFacePipeline
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from dotenv import load_dotenv
# Set Streamlit page configuration
st.set_page_config(page_title="Chat with Notes and AI", page_icon=":books:", layout="wide")
# Load environment variables
load_dotenv()
# Optimized pipeline setup
@st.cache_resource
def load_pipeline():
# Use a smaller model for faster performance
model_name = "databricks/dolly-v2-1b" # Switch to a lighter model
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float32, # Use float32 for CPU compatibility
device_map="auto", # Automatically map devices
trust_remote_code=True
)
# Return text-generation pipeline with full-text output
return pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.float32, # Ensure compatibility with CPU
device_map="auto",
return_full_text=True,
max_new_tokens=100 # Limit response length
)
# Initialize pipeline
generate_text = load_pipeline()
# LangChain Integration
hf_pipeline = HuggingFacePipeline(pipeline=generate_text)
# Templates for prompts
prompt = PromptTemplate(input_variables=["instruction"], template="{instruction}")
prompt_with_context = PromptTemplate(
input_variables=["instruction", "context"],
template="{instruction}\n\nInput:\n{context}"
)
# LangChain LLM chains
llm_chain = LLMChain(llm=hf_pipeline, prompt=prompt)
llm_context_chain = LLMChain(llm=hf_pipeline, prompt=prompt_with_context)
# Extract content from .txt files
def get_text_files_content(folder):
text = ""
for filename in os.listdir(folder):
if filename.endswith('.txt'):
with open(os.path.join(folder, filename), 'r', encoding='utf-8') as file:
text += file.read() + "\n"
return text
# Convert text into chunks for vectorization
def get_chunks(raw_text):
from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=500, # Smaller chunks for faster processing
chunk_overlap=50 # Minimal overlap
)
return text_splitter.split_text(raw_text)
# Create FAISS vectorstore for embeddings
def get_vectorstore(chunks):
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2", # Lightweight embeddings
model_kwargs={'device': 'cpu'} # Ensure embeddings run on CPU
)
return FAISS.from_texts(texts=chunks, embedding=embeddings)
# Handle user queries
def handle_question(question, vectorstore=None):
if vectorstore:
# Retrieve the most relevant chunk
documents = vectorstore.similarity_search(question, k=1) # Retrieve fewer chunks
context = "\n".join([doc.page_content for doc in documents])[:500] # Short context for efficiency
if context:
return llm_context_chain.predict(instruction=question, context=context).strip()
# Fallback to instruction-only chain if no context
return llm_chain.predict(instruction=question).strip()
def main():
st.title("Chat with Notes :books:")
# Session state for vectorstore
if "vectorstore" not in st.session_state:
st.session_state.vectorstore = None
# Data folders
data_folder = "data" # Folder for Current Affairs
essay_folder = "essays" # Folder for Essays
# Content type selection
content_type = st.sidebar.radio("Select Content Type:", ["Current Affairs", "Essays"])
# Subjects based on content type
if content_type == "Current Affairs":
subjects = [f for f in os.listdir(data_folder) if os.path.isdir(os.path.join(data_folder, f))] if os.path.exists(data_folder) else []
else:
subjects = [f.replace(".txt", "") for f in os.listdir(essay_folder) if f.endswith('.txt')] if os.path.exists(essay_folder) else []
# Subject selection
selected_subject = st.sidebar.selectbox("Select a Subject:", subjects)
# Load content based on selection
raw_text = ""
if content_type == "Current Affairs" and selected_subject:
subject_folder = os.path.join(data_folder, selected_subject)
raw_text = get_text_files_content(subject_folder)
elif content_type == "Essays" and selected_subject:
subject_file = os.path.join(essay_folder, f"{selected_subject}.txt")
if os.path.exists(subject_file):
with open(subject_file, "r", encoding="utf-8") as file:
raw_text = file.read()
# Display preview and create vectorstore
if raw_text:
st.subheader("Preview of Notes")
st.text_area("Preview Content:", value=raw_text[:1000], height=300, disabled=True)
if "vectorstore" not in st.session_state or st.session_state.vectorstore is None:
chunks = get_chunks(raw_text)
st.session_state.vectorstore = get_vectorstore(chunks)
else:
st.warning("No content available for the selected subject.")
# Question and response
st.subheader("Ask Your Question")
question = st.text_input("Ask a question about your selected subject:")
if question:
if st.session_state.vectorstore:
response = handle_question(question, st.session_state.vectorstore)
st.subheader("Answer:")
st.write(response or "No response found.")
else:
st.warning("Please load the content for the selected subject before asking a question.")
if __name__ == "__main__":
main()
|