File size: 6,025 Bytes
5102822
 
49bb688
0401909
 
 
 
 
74d69bb
5102822
 
ecf2148
 
 
5102822
 
 
14e71a0
5102822
 
14e71a0
 
 
8e786ac
74d69bb
 
c85425f
14e71a0
 
 
74d69bb
5102822
14e71a0
5102822
c85425f
 
 
14e71a0
 
 
 
5102822
 
14e71a0
5102822
 
14e71a0
5102822
 
14e71a0
8e786ac
14e71a0
 
 
 
5102822
14e71a0
5102822
 
 
14e71a0
5102822
 
 
 
 
 
 
 
14e71a0
5102822
0401909
5102822
 
14e71a0
 
5102822
8e786ac
5102822
14e71a0
5102822
 
14e71a0
 
5102822
8e786ac
5102822
14e71a0
5102822
 
14e71a0
8e786ac
14e71a0
c85425f
5102822
14e71a0
c85425f
14e71a0
 
5102822
 
0d30433
5102822
14e71a0
5102822
 
 
14e71a0
 
 
51fcb96
14e71a0
5991ba4
5102822
14e71a0
5991ba4
8e786ac
14e71a0
8e786ac
51fcb96
14e71a0
5102822
 
14e71a0
0d30433
5991ba4
 
 
 
14e71a0
5991ba4
 
 
0d30433
14e71a0
0d30433
 
14e71a0
0401909
8e786ac
14e71a0
 
5991ba4
 
 
14e71a0
0d30433
5102822
 
 
 
0d30433
14e71a0
5102822
 
 
14e71a0
5102822
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import torch
import streamlit as st
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_core.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_community.llms import HuggingFacePipeline
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from dotenv import load_dotenv

# Set Streamlit page configuration
st.set_page_config(page_title="Chat with Notes and AI", page_icon=":books:", layout="wide")

# Load environment variables
load_dotenv()

# Optimized pipeline setup
@st.cache_resource
def load_pipeline():
    # Use a smaller model for faster performance
    model_name = "databricks/dolly-v2-1b"  # Switch to a lighter model
    
    # Load tokenizer and model
    tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left", trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.float32,  # Use float32 for CPU compatibility
        device_map="auto",         # Automatically map devices
        trust_remote_code=True
    )

    # Return text-generation pipeline with full-text output
    return pipeline(
        task="text-generation",
        model=model,
        tokenizer=tokenizer,
        torch_dtype=torch.float32,  # Ensure compatibility with CPU
        device_map="auto",
        return_full_text=True,
        max_new_tokens=100  # Limit response length
    )

# Initialize pipeline
generate_text = load_pipeline()

# LangChain Integration
hf_pipeline = HuggingFacePipeline(pipeline=generate_text)

# Templates for prompts
prompt = PromptTemplate(input_variables=["instruction"], template="{instruction}")
prompt_with_context = PromptTemplate(
    input_variables=["instruction", "context"],
    template="{instruction}\n\nInput:\n{context}"
)

# LangChain LLM chains
llm_chain = LLMChain(llm=hf_pipeline, prompt=prompt)
llm_context_chain = LLMChain(llm=hf_pipeline, prompt=prompt_with_context)

# Extract content from .txt files
def get_text_files_content(folder):
    text = ""
    for filename in os.listdir(folder):
        if filename.endswith('.txt'):
            with open(os.path.join(folder, filename), 'r', encoding='utf-8') as file:
                text += file.read() + "\n"
    return text

# Convert text into chunks for vectorization
def get_chunks(raw_text):
    from langchain.text_splitter import CharacterTextSplitter
    text_splitter = CharacterTextSplitter(
        separator="\n",
        chunk_size=500,  # Smaller chunks for faster processing
        chunk_overlap=50  # Minimal overlap
    )
    return text_splitter.split_text(raw_text)

# Create FAISS vectorstore for embeddings
def get_vectorstore(chunks):
    embeddings = HuggingFaceEmbeddings(
        model_name="sentence-transformers/all-MiniLM-L6-v2",  # Lightweight embeddings
        model_kwargs={'device': 'cpu'}  # Ensure embeddings run on CPU
    )
    return FAISS.from_texts(texts=chunks, embedding=embeddings)

# Handle user queries
def handle_question(question, vectorstore=None):
    if vectorstore:
        # Retrieve the most relevant chunk
        documents = vectorstore.similarity_search(question, k=1)  # Retrieve fewer chunks
        context = "\n".join([doc.page_content for doc in documents])[:500]  # Short context for efficiency

        if context:
            return llm_context_chain.predict(instruction=question, context=context).strip()

    # Fallback to instruction-only chain if no context
    return llm_chain.predict(instruction=question).strip()

def main():
    st.title("Chat with Notes :books:")

    # Session state for vectorstore
    if "vectorstore" not in st.session_state:
        st.session_state.vectorstore = None

    # Data folders
    data_folder = "data"  # Folder for Current Affairs
    essay_folder = "essays"  # Folder for Essays

    # Content type selection
    content_type = st.sidebar.radio("Select Content Type:", ["Current Affairs", "Essays"])

    # Subjects based on content type
    if content_type == "Current Affairs":
        subjects = [f for f in os.listdir(data_folder) if os.path.isdir(os.path.join(data_folder, f))] if os.path.exists(data_folder) else []
    else:
        subjects = [f.replace(".txt", "") for f in os.listdir(essay_folder) if f.endswith('.txt')] if os.path.exists(essay_folder) else []

    # Subject selection
    selected_subject = st.sidebar.selectbox("Select a Subject:", subjects)

    # Load content based on selection
    raw_text = ""
    if content_type == "Current Affairs" and selected_subject:
        subject_folder = os.path.join(data_folder, selected_subject)
        raw_text = get_text_files_content(subject_folder)
    elif content_type == "Essays" and selected_subject:
        subject_file = os.path.join(essay_folder, f"{selected_subject}.txt")
        if os.path.exists(subject_file):
            with open(subject_file, "r", encoding="utf-8") as file:
                raw_text = file.read()

    # Display preview and create vectorstore
    if raw_text:
        st.subheader("Preview of Notes")
        st.text_area("Preview Content:", value=raw_text[:1000], height=300, disabled=True)

        if "vectorstore" not in st.session_state or st.session_state.vectorstore is None:
            chunks = get_chunks(raw_text)
            st.session_state.vectorstore = get_vectorstore(chunks)
    else:
        st.warning("No content available for the selected subject.")

    # Question and response
    st.subheader("Ask Your Question")
    question = st.text_input("Ask a question about your selected subject:")
    if question:
        if st.session_state.vectorstore:
            response = handle_question(question, st.session_state.vectorstore)
            st.subheader("Answer:")
            st.write(response or "No response found.")
        else:
            st.warning("Please load the content for the selected subject before asking a question.")

if __name__ == "__main__":
    main()