danielrosehill's picture
updated
5c2a16c
raw
history blame
11.1 kB
import streamlit as st
import pandas as pd
import re
import time
import os
from io import StringIO
import pyperclip
import json
import requests
st.set_page_config(page_title="Prompt Output Separator", page_icon="βœ‚οΈ", layout="wide", initial_sidebar_state="expanded")
if 'api_key' not in st.session_state:
st.session_state.api_key = None
if 'history' not in st.session_state:
st.session_state.history = []
if 'prompt' not in st.session_state:
st.session_state.prompt = ""
if 'output' not in st.session_state:
st.session_state.output = ""
if 'title' not in st.session_state:
st.session_state.title = ""
if 'mode' not in st.session_state:
st.session_state.mode = 'light'
def count_text_stats(text):
words = len(text.split())
chars = len(text)
return words, chars
def analyze_with_llm(text):
if not st.session_state.api_key:
st.error("Please provide an OpenAI API key in the sidebar")
return None, None, None
try:
headers = {
"Authorization": f"Bearer {st.session_state.api_key}",
"Content-Type": "application/json"
}
data = {
"model": "gpt-4",
"messages": [
{
"role": "system",
"content": """You are a text separator. Your ONLY job is to split the input text into its original prompt and response components.
CRITICAL RULES:
- DO NOT summarize or modify ANY text
- Return the EXACT original text split into two parts
- Make NO changes to the content
- Preserve ALL formatting and whitespace
Return ONLY a JSON object with these fields:
- title: brief descriptive title (max 6 words)
- prompt: the EXACT, COMPLETE first part of the conversation
- output: the EXACT, COMPLETE response/answer part"""
},
{
"role": "user",
"content": f"Split this text into its original parts with NO modifications: {text}"
}
],
"temperature": 0
}
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=headers,
json=data
)
if response.status_code == 200:
result = response.json()['choices'][0]['message']['content']
try:
parsed = json.loads(result)
# Verify no content was lost
original_words = len(text.split())
result_words = len((parsed.get("prompt", "") + parsed.get("output", "")).split())
if result_words < original_words * 0.9: # Allow for 10% difference due to splitting
st.error("Content was modified during processing. Using basic split instead.")
parts = text.split('\n\n', 1)
if len(parts) == 2:
return "Untitled Conversation", parts[0].strip(), parts[1].strip()
return "Untitled Conversation", text.strip(), ""
return parsed.get("title"), parsed.get("prompt"), parsed.get("output")
except json.JSONDecodeError:
st.error("Failed to parse LLM response as JSON")
return None, None, None
else:
st.error(f"API request failed with status code: {response.status_code}")
st.error(f"Response: {response.text}")
return None, None, None
except Exception as e:
st.error(f"Error analyzing text: {str(e)}")
return None, None, None
def separate_prompt_output(text):
if not text:
return "", "", ""
if st.session_state.api_key:
title, prompt, output = analyze_with_llm(text)
if all(v is not None for v in [title, prompt, output]):
return title, prompt, output
parts = text.split('\n\n', 1)
if len(parts) == 2:
return "Untitled Conversation", parts[0].strip(), parts[1].strip()
return "Untitled Conversation", text.strip(), ""
def process_column(column):
processed_data = []
for item in column:
title, prompt, output = separate_prompt_output(str(item))
processed_data.append({"Title": title, "Prompt": prompt, "Output": output})
return pd.DataFrame(processed_data)
with st.sidebar:
st.image("https://img.icons8.com/color/96/000000/chat.png", width=50)
st.markdown("## πŸ› οΈ Configuration")
api_key = st.text_input("Enter OpenAI API Key", type="password", help="Get your API key from platform.openai.com")
if api_key:
st.session_state.api_key = api_key
st.markdown("---")
st.markdown("## 🎨 Appearance")
dark_mode = st.checkbox("Dark Mode", value=st.session_state.mode == 'dark')
st.session_state.mode = 'dark' if dark_mode else 'light'
st.title("βœ‚οΈ Prompt Output Separator")
st.markdown("Utility to assist with separating prompts and outputs when they are recorded in a unified block of text.")
tabs = st.tabs(["πŸ“ Paste Text", "πŸ“ File Processing", "πŸ“Š History"])
with tabs[0]:
st.subheader("Paste Prompt and Output")
input_container = st.container()
with input_container:
input_text = st.text_area("Paste your conversation here...", height=200, placeholder="Paste your conversation here. The tool will automatically separate the prompt from the output.", help="Enter the text you want to separate into prompt and output.")
if st.button("πŸ”„ Process", use_container_width=True) and input_text:
with st.spinner("Processing..."):
title, prompt, output = separate_prompt_output(input_text)
st.session_state.title = title
st.session_state.prompt = prompt
st.session_state.output = output
st.session_state.history.append(input_text)
st.markdown("### πŸ“Œ Suggested Title")
title_area = st.text_area("", value=st.session_state.get('title', ""), height=70, key="title_area", help="AI-generated title based on the conversation content")
st.markdown("### πŸ“ Prompt")
prompt_area = st.text_area("", value=st.session_state.get('prompt', ""), height=200, key="prompt_area", help="The extracted prompt will appear here")
prompt_words, prompt_chars = count_text_stats(st.session_state.get('prompt', ""))
st.markdown(f"<p class='stats-text'>Words: {prompt_words} | Characters: {prompt_chars}</p>", unsafe_allow_html=True)
if st.button("πŸ“‹ Copy Prompt", use_container_width=True):
pyperclip.copy(st.session_state.get('prompt', ""))
st.success("Copied prompt to clipboard!")
st.markdown("### πŸ€– Output")
output_area = st.text_area("", value=st.session_state.get('output', ""), height=200, key="output_area", help="The extracted output will appear here")
output_words, output_chars = count_text_stats(st.session_state.get('output', ""))
st.markdown(f"<p class='stats-text'>Words: {output_words} | Characters: {output_chars}</p>", unsafe_allow_html=True)
if st.button("πŸ“‹ Copy Output", use_container_width=True):
pyperclip.copy(st.session_state.get('output', ""))
st.success("Copied output to clipboard!")
with tabs[1]:
st.subheader("Process File")
uploaded_file = st.file_uploader("Choose a file", type=['txt', 'csv'])
if uploaded_file is not None:
try:
if uploaded_file.type == "text/csv":
df = pd.read_csv(uploaded_file)
st.write("Select the column containing the conversations:")
column = st.selectbox("Column", df.columns.tolist())
if st.button("Process CSV"):
with st.spinner("Processing..."):
result_df = process_column(df[column])
st.write(result_df)
st.download_button(
"Download Processed CSV",
result_df.to_csv(index=False).encode('utf-8'),
"processed_conversations.csv",
"text/csv",
key='download-csv'
)
else:
content = StringIO(uploaded_file.getvalue().decode("utf-8")).read()
if st.button("Process Text File"):
with st.spinner("Processing..."):
title, prompt, output = separate_prompt_output(content)
st.session_state.title = title
st.session_state.prompt = prompt
st.session_state.output = output
st.session_state.history.append(content)
st.experimental_rerun()
except Exception as e:
st.error(f"Error processing file: {str(e)}")
with tabs[2]:
st.subheader("Processing History")
if st.session_state.history:
if st.button("πŸ—‘οΈ Clear History", type="secondary"):
st.session_state.history = []
st.experimental_rerun()
for idx, item in enumerate(reversed(st.session_state.history)):
with st.expander(f"Entry {len(st.session_state.history) - idx}", expanded=False):
st.text_area("Content", value=item, height=150, key=f"history_{idx}", disabled=True)
else:
st.info("πŸ’‘ No processing history available yet. Process some text to see it here.")
st.markdown("---")
st.markdown("<div style='text-align: center'><p>Created by <a href='https://github.com/danielrosehill/Prompt-And-Output-Separator'>Daniel Rosehill</a></p></div>", unsafe_allow_html=True)
if st.session_state.mode == 'dark':
st.markdown("""
<style>
body {
color: #fff;
background-color: #262730;
}
.stTextInput, .stTextArea, .stNumberInput, .stSelectbox, .stRadio, .stCheckbox, .stSlider, .stDateInput, .stTimeInput {
background-color: #3d3d4d;
color: #fff;
}
.stButton>button {
background-color: #5c5c7a;
color: white;
}
.stButton>button:hover {
background-color: #6e6e8a;
color: white;
}
.streamlit-expanderHeader {
background-color: #3d3d4d !important;
color: #fff !important;
}
.streamlit-expanderContent {
background-color: #3d3d4d !important;
}
.streamlit-container {
background-color: #262730;
}
.stAlert {
background-color: #3d3d4d !important;
color: #fff !important;
}
.stats-text {
color: #aaa !important;
}
.css-10trblm {
color: #fff !important;
}
.css-16idsys {
color: #fff !important;
}
.css-1vq4p4l {
color: #fff !important;
}
</style>
""", unsafe_allow_html=True)