File size: 11,116 Bytes
6cda05c
 
 
 
 
 
 
 
5c2a16c
6cda05c
5c2a16c
d796c69
5c2a16c
 
d796c69
 
 
 
 
 
 
 
 
 
6cda05c
d796c69
 
 
 
6cda05c
 
5c2a16c
6cda05c
41c6f7c
6cda05c
5c2a16c
 
 
 
 
 
 
 
6cda05c
 
5c2a16c
 
 
 
 
 
 
 
 
 
 
 
6cda05c
 
 
5c2a16c
6cda05c
 
5c2a16c
 
 
 
 
 
 
6cda05c
5c2a16c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cda05c
5c2a16c
 
6cda05c
 
 
d796c69
5c2a16c
d796c69
 
 
6cda05c
 
d796c69
 
6cda05c
 
 
 
d796c69
 
6cda05c
 
d796c69
 
 
5c2a16c
d796c69
5c2a16c
6cda05c
d796c69
 
41c6f7c
d796c69
6cda05c
d796c69
5c2a16c
d796c69
 
 
 
 
 
 
41c6f7c
d796c69
5c2a16c
41c6f7c
 
 
 
 
 
 
 
 
d796c69
5c2a16c
6cda05c
d796c69
5c2a16c
d796c69
 
 
 
 
 
 
 
5c2a16c
d796c69
 
 
 
 
 
 
 
5c2a16c
41c6f7c
 
 
 
 
 
5c2a16c
 
41c6f7c
 
5c2a16c
 
41c6f7c
 
5c2a16c
 
 
 
d796c69
41c6f7c
5c2a16c
41c6f7c
 
 
 
 
 
 
 
5c2a16c
41c6f7c
 
d796c69
 
 
 
 
 
 
 
 
 
5c2a16c
d796c69
 
 
 
5c2a16c
41c6f7c
6cda05c
 
 
41c6f7c
 
 
 
 
5c2a16c
 
41c6f7c
 
5c2a16c
41c6f7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c2a16c
 
41c6f7c
 
5c2a16c
 
41c6f7c
 
5c2a16c
 
41c6f7c
 
5c2a16c
 
41c6f7c
d796c69
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import streamlit as st
import pandas as pd
import re
import time
import os
from io import StringIO
import pyperclip
import json
import requests

st.set_page_config(page_title="Prompt Output Separator", page_icon="βœ‚οΈ", layout="wide", initial_sidebar_state="expanded")

if 'api_key' not in st.session_state:
    st.session_state.api_key = None
if 'history' not in st.session_state:
    st.session_state.history = []
if 'prompt' not in st.session_state:
    st.session_state.prompt = ""
if 'output' not in st.session_state:
    st.session_state.output = ""
if 'title' not in st.session_state:
    st.session_state.title = ""
if 'mode' not in st.session_state:
    st.session_state.mode = 'light'

def count_text_stats(text):
    words = len(text.split())
    chars = len(text)
    return words, chars

def analyze_with_llm(text):
    if not st.session_state.api_key:
        st.error("Please provide an OpenAI API key in the sidebar")
        return None, None, None
    try:
        headers = {
            "Authorization": f"Bearer {st.session_state.api_key}",
            "Content-Type": "application/json"
        }
        
        data = {
            "model": "gpt-4",
            "messages": [
                {
                    "role": "system",
                    "content": """You are a text separator. Your ONLY job is to split the input text into its original prompt and response components. 
                    
CRITICAL RULES:
- DO NOT summarize or modify ANY text
- Return the EXACT original text split into two parts
- Make NO changes to the content
- Preserve ALL formatting and whitespace

Return ONLY a JSON object with these fields:
- title: brief descriptive title (max 6 words)
- prompt: the EXACT, COMPLETE first part of the conversation
- output: the EXACT, COMPLETE response/answer part"""
                },
                {
                    "role": "user",
                    "content": f"Split this text into its original parts with NO modifications: {text}"
                }
            ],
            "temperature": 0
        }
        
        response = requests.post(
            "https://api.openai.com/v1/chat/completions",
            headers=headers,
            json=data
        )
        
        if response.status_code == 200:
            result = response.json()['choices'][0]['message']['content']
            try:
                parsed = json.loads(result)
                # Verify no content was lost
                original_words = len(text.split())
                result_words = len((parsed.get("prompt", "") + parsed.get("output", "")).split())
                if result_words < original_words * 0.9:  # Allow for 10% difference due to splitting
                    st.error("Content was modified during processing. Using basic split instead.")
                    parts = text.split('\n\n', 1)
                    if len(parts) == 2:
                        return "Untitled Conversation", parts[0].strip(), parts[1].strip()
                    return "Untitled Conversation", text.strip(), ""
                return parsed.get("title"), parsed.get("prompt"), parsed.get("output")
            except json.JSONDecodeError:
                st.error("Failed to parse LLM response as JSON")
                return None, None, None
        else:
            st.error(f"API request failed with status code: {response.status_code}")
            st.error(f"Response: {response.text}")
            return None, None, None
            
    except Exception as e:
        st.error(f"Error analyzing text: {str(e)}")
        return None, None, None

def separate_prompt_output(text):
    if not text:
        return "", "", ""
    if st.session_state.api_key:
        title, prompt, output = analyze_with_llm(text)
        if all(v is not None for v in [title, prompt, output]):
            return title, prompt, output
    parts = text.split('\n\n', 1)
    if len(parts) == 2:
        return "Untitled Conversation", parts[0].strip(), parts[1].strip()
    return "Untitled Conversation", text.strip(), ""

def process_column(column):
    processed_data = []
    for item in column:
        title, prompt, output = separate_prompt_output(str(item))
        processed_data.append({"Title": title, "Prompt": prompt, "Output": output})
    return pd.DataFrame(processed_data)

with st.sidebar:
    st.image("https://img.icons8.com/color/96/000000/chat.png", width=50)
    st.markdown("## πŸ› οΈ Configuration")
    api_key = st.text_input("Enter OpenAI API Key", type="password", help="Get your API key from platform.openai.com")
    if api_key:
        st.session_state.api_key = api_key

    st.markdown("---")
    st.markdown("## 🎨 Appearance")
    dark_mode = st.checkbox("Dark Mode", value=st.session_state.mode == 'dark')
    st.session_state.mode = 'dark' if dark_mode else 'light'

st.title("βœ‚οΈ Prompt Output Separator")
st.markdown("Utility to assist with separating prompts and outputs when they are recorded in a unified block of text.")

tabs = st.tabs(["πŸ“ Paste Text", "πŸ“ File Processing", "πŸ“Š History"])

with tabs[0]:
    st.subheader("Paste Prompt and Output")
    
    input_container = st.container()
    
    with input_container:
        input_text = st.text_area("Paste your conversation here...", height=200, placeholder="Paste your conversation here. The tool will automatically separate the prompt from the output.", help="Enter the text you want to separate into prompt and output.")
        
        if st.button("πŸ”„ Process", use_container_width=True) and input_text:
            with st.spinner("Processing..."):
                title, prompt, output = separate_prompt_output(input_text)
                st.session_state.title = title
                st.session_state.prompt = prompt
                st.session_state.output = output
                st.session_state.history.append(input_text)
    
    st.markdown("### πŸ“Œ Suggested Title")
    title_area = st.text_area("", value=st.session_state.get('title', ""), height=70, key="title_area", help="AI-generated title based on the conversation content")

    st.markdown("### πŸ“ Prompt")
    prompt_area = st.text_area("", value=st.session_state.get('prompt', ""), height=200, key="prompt_area", help="The extracted prompt will appear here")
    prompt_words, prompt_chars = count_text_stats(st.session_state.get('prompt', ""))
    st.markdown(f"<p class='stats-text'>Words: {prompt_words} | Characters: {prompt_chars}</p>", unsafe_allow_html=True)
    
    if st.button("πŸ“‹ Copy Prompt", use_container_width=True):
        pyperclip.copy(st.session_state.get('prompt', ""))
        st.success("Copied prompt to clipboard!")

    st.markdown("### πŸ€– Output")
    output_area = st.text_area("", value=st.session_state.get('output', ""), height=200, key="output_area", help="The extracted output will appear here")
    output_words, output_chars = count_text_stats(st.session_state.get('output', ""))
    st.markdown(f"<p class='stats-text'>Words: {output_words} | Characters: {output_chars}</p>", unsafe_allow_html=True)
    
    if st.button("πŸ“‹ Copy Output", use_container_width=True):
        pyperclip.copy(st.session_state.get('output', ""))
        st.success("Copied output to clipboard!")

with tabs[1]:
    st.subheader("Process File")
    uploaded_file = st.file_uploader("Choose a file", type=['txt', 'csv'])
    
    if uploaded_file is not None:
        try:
            if uploaded_file.type == "text/csv":
                df = pd.read_csv(uploaded_file)
                st.write("Select the column containing the conversations:")
                column = st.selectbox("Column", df.columns.tolist())
                if st.button("Process CSV"):
                    with st.spinner("Processing..."):
                        result_df = process_column(df[column])
                        st.write(result_df)
                        st.download_button(
                            "Download Processed CSV",
                            result_df.to_csv(index=False).encode('utf-8'),
                            "processed_conversations.csv",
                            "text/csv",
                            key='download-csv'
                        )
            else:
                content = StringIO(uploaded_file.getvalue().decode("utf-8")).read()
                if st.button("Process Text File"):
                    with st.spinner("Processing..."):
                        title, prompt, output = separate_prompt_output(content)
                        st.session_state.title = title
                        st.session_state.prompt = prompt
                        st.session_state.output = output
                        st.session_state.history.append(content)
                        st.experimental_rerun()
                        
        except Exception as e:
            st.error(f"Error processing file: {str(e)}")

with tabs[2]:
    st.subheader("Processing History")
    if st.session_state.history:
        if st.button("πŸ—‘οΈ Clear History", type="secondary"):
            st.session_state.history = []
            st.experimental_rerun()
            
        for idx, item in enumerate(reversed(st.session_state.history)):
            with st.expander(f"Entry {len(st.session_state.history) - idx}", expanded=False):
                st.text_area("Content", value=item, height=150, key=f"history_{idx}", disabled=True)
    else:
        st.info("πŸ’‘ No processing history available yet. Process some text to see it here.")

st.markdown("---")
st.markdown("<div style='text-align: center'><p>Created by <a href='https://github.com/danielrosehill/Prompt-And-Output-Separator'>Daniel Rosehill</a></p></div>", unsafe_allow_html=True)

if st.session_state.mode == 'dark':
    st.markdown("""
    <style>
        body {
            color: #fff;
            background-color: #262730;
        }
        .stTextInput, .stTextArea, .stNumberInput, .stSelectbox, .stRadio, .stCheckbox, .stSlider, .stDateInput, .stTimeInput {
            background-color: #3d3d4d;
            color: #fff;
        }
       .stButton>button {
            background-color: #5c5c7a;
            color: white;
        }
         .stButton>button:hover {
            background-color: #6e6e8a;
            color: white;
        }
        
        .streamlit-expanderHeader {
            background-color: #3d3d4d !important;
            color: #fff !important;
        }
        
         .streamlit-expanderContent {
             background-color: #3d3d4d !important;
        }
        
        .streamlit-container {
             background-color: #262730;
         }
        
        .stAlert {
            background-color: #3d3d4d !important;
            color: #fff !important;
        }
        
        .stats-text {
            color: #aaa !important;
        }
        
        .css-10trblm {
            color: #fff !important;
        }
        
        .css-16idsys {
            color: #fff !important;
        }
        
        .css-1vq4p4l {
            color: #fff !important;
        }
    </style>
    """, unsafe_allow_html=True)