File size: 11,116 Bytes
6cda05c 5c2a16c 6cda05c 5c2a16c d796c69 5c2a16c d796c69 6cda05c d796c69 6cda05c 5c2a16c 6cda05c 41c6f7c 6cda05c 5c2a16c 6cda05c 5c2a16c 6cda05c 5c2a16c 6cda05c 5c2a16c 6cda05c 5c2a16c 6cda05c 5c2a16c 6cda05c d796c69 5c2a16c d796c69 6cda05c d796c69 6cda05c d796c69 6cda05c d796c69 5c2a16c d796c69 5c2a16c 6cda05c d796c69 41c6f7c d796c69 6cda05c d796c69 5c2a16c d796c69 41c6f7c d796c69 5c2a16c 41c6f7c d796c69 5c2a16c 6cda05c d796c69 5c2a16c d796c69 5c2a16c d796c69 5c2a16c 41c6f7c 5c2a16c 41c6f7c 5c2a16c 41c6f7c 5c2a16c d796c69 41c6f7c 5c2a16c 41c6f7c 5c2a16c 41c6f7c d796c69 5c2a16c d796c69 5c2a16c 41c6f7c 6cda05c 41c6f7c 5c2a16c 41c6f7c 5c2a16c 41c6f7c 5c2a16c 41c6f7c 5c2a16c 41c6f7c 5c2a16c 41c6f7c 5c2a16c 41c6f7c d796c69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import streamlit as st
import pandas as pd
import re
import time
import os
from io import StringIO
import pyperclip
import json
import requests
st.set_page_config(page_title="Prompt Output Separator", page_icon="βοΈ", layout="wide", initial_sidebar_state="expanded")
if 'api_key' not in st.session_state:
st.session_state.api_key = None
if 'history' not in st.session_state:
st.session_state.history = []
if 'prompt' not in st.session_state:
st.session_state.prompt = ""
if 'output' not in st.session_state:
st.session_state.output = ""
if 'title' not in st.session_state:
st.session_state.title = ""
if 'mode' not in st.session_state:
st.session_state.mode = 'light'
def count_text_stats(text):
words = len(text.split())
chars = len(text)
return words, chars
def analyze_with_llm(text):
if not st.session_state.api_key:
st.error("Please provide an OpenAI API key in the sidebar")
return None, None, None
try:
headers = {
"Authorization": f"Bearer {st.session_state.api_key}",
"Content-Type": "application/json"
}
data = {
"model": "gpt-4",
"messages": [
{
"role": "system",
"content": """You are a text separator. Your ONLY job is to split the input text into its original prompt and response components.
CRITICAL RULES:
- DO NOT summarize or modify ANY text
- Return the EXACT original text split into two parts
- Make NO changes to the content
- Preserve ALL formatting and whitespace
Return ONLY a JSON object with these fields:
- title: brief descriptive title (max 6 words)
- prompt: the EXACT, COMPLETE first part of the conversation
- output: the EXACT, COMPLETE response/answer part"""
},
{
"role": "user",
"content": f"Split this text into its original parts with NO modifications: {text}"
}
],
"temperature": 0
}
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=headers,
json=data
)
if response.status_code == 200:
result = response.json()['choices'][0]['message']['content']
try:
parsed = json.loads(result)
# Verify no content was lost
original_words = len(text.split())
result_words = len((parsed.get("prompt", "") + parsed.get("output", "")).split())
if result_words < original_words * 0.9: # Allow for 10% difference due to splitting
st.error("Content was modified during processing. Using basic split instead.")
parts = text.split('\n\n', 1)
if len(parts) == 2:
return "Untitled Conversation", parts[0].strip(), parts[1].strip()
return "Untitled Conversation", text.strip(), ""
return parsed.get("title"), parsed.get("prompt"), parsed.get("output")
except json.JSONDecodeError:
st.error("Failed to parse LLM response as JSON")
return None, None, None
else:
st.error(f"API request failed with status code: {response.status_code}")
st.error(f"Response: {response.text}")
return None, None, None
except Exception as e:
st.error(f"Error analyzing text: {str(e)}")
return None, None, None
def separate_prompt_output(text):
if not text:
return "", "", ""
if st.session_state.api_key:
title, prompt, output = analyze_with_llm(text)
if all(v is not None for v in [title, prompt, output]):
return title, prompt, output
parts = text.split('\n\n', 1)
if len(parts) == 2:
return "Untitled Conversation", parts[0].strip(), parts[1].strip()
return "Untitled Conversation", text.strip(), ""
def process_column(column):
processed_data = []
for item in column:
title, prompt, output = separate_prompt_output(str(item))
processed_data.append({"Title": title, "Prompt": prompt, "Output": output})
return pd.DataFrame(processed_data)
with st.sidebar:
st.image("https://img.icons8.com/color/96/000000/chat.png", width=50)
st.markdown("## π οΈ Configuration")
api_key = st.text_input("Enter OpenAI API Key", type="password", help="Get your API key from platform.openai.com")
if api_key:
st.session_state.api_key = api_key
st.markdown("---")
st.markdown("## π¨ Appearance")
dark_mode = st.checkbox("Dark Mode", value=st.session_state.mode == 'dark')
st.session_state.mode = 'dark' if dark_mode else 'light'
st.title("βοΈ Prompt Output Separator")
st.markdown("Utility to assist with separating prompts and outputs when they are recorded in a unified block of text.")
tabs = st.tabs(["π Paste Text", "π File Processing", "π History"])
with tabs[0]:
st.subheader("Paste Prompt and Output")
input_container = st.container()
with input_container:
input_text = st.text_area("Paste your conversation here...", height=200, placeholder="Paste your conversation here. The tool will automatically separate the prompt from the output.", help="Enter the text you want to separate into prompt and output.")
if st.button("π Process", use_container_width=True) and input_text:
with st.spinner("Processing..."):
title, prompt, output = separate_prompt_output(input_text)
st.session_state.title = title
st.session_state.prompt = prompt
st.session_state.output = output
st.session_state.history.append(input_text)
st.markdown("### π Suggested Title")
title_area = st.text_area("", value=st.session_state.get('title', ""), height=70, key="title_area", help="AI-generated title based on the conversation content")
st.markdown("### π Prompt")
prompt_area = st.text_area("", value=st.session_state.get('prompt', ""), height=200, key="prompt_area", help="The extracted prompt will appear here")
prompt_words, prompt_chars = count_text_stats(st.session_state.get('prompt', ""))
st.markdown(f"<p class='stats-text'>Words: {prompt_words} | Characters: {prompt_chars}</p>", unsafe_allow_html=True)
if st.button("π Copy Prompt", use_container_width=True):
pyperclip.copy(st.session_state.get('prompt', ""))
st.success("Copied prompt to clipboard!")
st.markdown("### π€ Output")
output_area = st.text_area("", value=st.session_state.get('output', ""), height=200, key="output_area", help="The extracted output will appear here")
output_words, output_chars = count_text_stats(st.session_state.get('output', ""))
st.markdown(f"<p class='stats-text'>Words: {output_words} | Characters: {output_chars}</p>", unsafe_allow_html=True)
if st.button("π Copy Output", use_container_width=True):
pyperclip.copy(st.session_state.get('output', ""))
st.success("Copied output to clipboard!")
with tabs[1]:
st.subheader("Process File")
uploaded_file = st.file_uploader("Choose a file", type=['txt', 'csv'])
if uploaded_file is not None:
try:
if uploaded_file.type == "text/csv":
df = pd.read_csv(uploaded_file)
st.write("Select the column containing the conversations:")
column = st.selectbox("Column", df.columns.tolist())
if st.button("Process CSV"):
with st.spinner("Processing..."):
result_df = process_column(df[column])
st.write(result_df)
st.download_button(
"Download Processed CSV",
result_df.to_csv(index=False).encode('utf-8'),
"processed_conversations.csv",
"text/csv",
key='download-csv'
)
else:
content = StringIO(uploaded_file.getvalue().decode("utf-8")).read()
if st.button("Process Text File"):
with st.spinner("Processing..."):
title, prompt, output = separate_prompt_output(content)
st.session_state.title = title
st.session_state.prompt = prompt
st.session_state.output = output
st.session_state.history.append(content)
st.experimental_rerun()
except Exception as e:
st.error(f"Error processing file: {str(e)}")
with tabs[2]:
st.subheader("Processing History")
if st.session_state.history:
if st.button("ποΈ Clear History", type="secondary"):
st.session_state.history = []
st.experimental_rerun()
for idx, item in enumerate(reversed(st.session_state.history)):
with st.expander(f"Entry {len(st.session_state.history) - idx}", expanded=False):
st.text_area("Content", value=item, height=150, key=f"history_{idx}", disabled=True)
else:
st.info("π‘ No processing history available yet. Process some text to see it here.")
st.markdown("---")
st.markdown("<div style='text-align: center'><p>Created by <a href='https://github.com/danielrosehill/Prompt-And-Output-Separator'>Daniel Rosehill</a></p></div>", unsafe_allow_html=True)
if st.session_state.mode == 'dark':
st.markdown("""
<style>
body {
color: #fff;
background-color: #262730;
}
.stTextInput, .stTextArea, .stNumberInput, .stSelectbox, .stRadio, .stCheckbox, .stSlider, .stDateInput, .stTimeInput {
background-color: #3d3d4d;
color: #fff;
}
.stButton>button {
background-color: #5c5c7a;
color: white;
}
.stButton>button:hover {
background-color: #6e6e8a;
color: white;
}
.streamlit-expanderHeader {
background-color: #3d3d4d !important;
color: #fff !important;
}
.streamlit-expanderContent {
background-color: #3d3d4d !important;
}
.streamlit-container {
background-color: #262730;
}
.stAlert {
background-color: #3d3d4d !important;
color: #fff !important;
}
.stats-text {
color: #aaa !important;
}
.css-10trblm {
color: #fff !important;
}
.css-16idsys {
color: #fff !important;
}
.css-1vq4p4l {
color: #fff !important;
}
</style>
""", unsafe_allow_html=True) |