danielrosehill's picture
updated
5c2a16c
raw
history blame
11.2 kB
import streamlit as st
import pandas as pd
import re
import time
import os
from io import StringIO
import pyperclip
from openai import OpenAI
import json
# Page Configuration
st.set_page_config(
page_title="Prompt Output Separator",
page_icon="βœ‚οΈ",
layout="wide",
initial_sidebar_state="expanded"
)
# Initialize session state variables
if 'openai_api_key' not in st.session_state:
st.session_state.openai_api_key = None
if 'history' not in st.session_state:
st.session_state.history = []
if 'prompt' not in st.session_state:
st.session_state.prompt = ""
if 'output' not in st.session_state:
st.session_state.output = ""
if 'title' not in st.session_state:
st.session_state.title = ""
if 'mode' not in st.session_state:
st.session_state.mode = 'light'
def count_text_stats(text):
words = len(text.split())
chars = len(text)
return words, chars
def analyze_with_llm(text):
if not st.session_state.openai_api_key:
st.error("Please provide an OpenAI API key in the sidebar")
return None, None, None
try:
client = OpenAI(api_key=st.session_state.openai_api_key)
response = client.chat.completions.create(
model="gpt-3.5-turbo-1106",
messages=[
{
"role": "system",
"content": """You are a text analysis expert. Your task is to separate a conversation into the prompt/question and the response/answer. Return ONLY a JSON object with three fields: - title: a short, descriptive title for the conversation (max 6 words) - prompt: the user's question or prompt - output: the response or answer If you cannot clearly identify any part, set it to null."""
},
{
"role": "user",
"content": f"Please analyze this text and separate it into title, prompt and output: {text}"
}
],
temperature=0,
response_format={"type": "json_object"}
)
result = response.choices[0].message.content
parsed = json.loads(result)
return parsed.get("title"), parsed.get("prompt"), parsed.get("output")
except Exception as e:
st.error(f"Error analyzing text: {str(e)}. The error was: {e}")
return None, None, None
def separate_prompt_output(text):
if not text:
return "", "", ""
if st.session_state.openai_api_key:
title, prompt, output = analyze_with_llm(text)
if all(v is not None for v in [title, prompt, output]):
return title, prompt, output
parts = text.split('\n\n', 1)
if len(parts) == 2:
return "Untitled Conversation", parts[0].strip(), parts[1].strip()
return "Untitled Conversation", text.strip(), ""
def process_column(column):
processed_data = []
for item in column:
title, prompt, output = separate_prompt_output(str(item))
processed_data.append({"Title": title, "Prompt": prompt, "Output": output})
return pd.DataFrame(processed_data)
# Sidebar configuration
with st.sidebar:
st.image("https://img.icons8.com/color/96/000000/chat.png", width=50)
st.markdown("## πŸ› οΈ Configuration")
api_key = st.text_input("Enter OpenAI API Key", type="password")
if api_key:
st.session_state.openai_api_key = api_key
# Dark mode toggle using checkbox
st.markdown("---")
st.markdown("## 🎨 Appearance")
dark_mode = st.checkbox("Dark Mode", value=st.session_state.mode == 'dark')
st.session_state.mode = 'dark' if dark_mode else 'light'
# Main interface
st.title("βœ‚οΈ Prompt Output Separator")
st.markdown(
"Utility to assist with separating prompts and outputs when they are recorded in a unified block of text. For cost-optimisation, uses GPT 3.5.")
# Tabs with icons
tabs = st.tabs(["πŸ“ Paste Text", "πŸ“ File Processing", "πŸ“Š History"])
# Paste Text Tab
with tabs[0]:
st.subheader("Paste Prompt and Output")
# Input area with placeholder
input_container = st.container()
with input_container:
input_text = st.text_area(
"Paste your conversation here...",
height=200,
placeholder="Paste your conversation here. The tool will automatically separate the prompt from the output.",
help="Enter the text you want to separate into prompt and output."
)
# Process button
if st.button("πŸ”„ Process", use_container_width=True) and input_text:
with st.spinner("Processing..."):
title, prompt, output = separate_prompt_output(input_text)
st.session_state.title = title
st.session_state.prompt = prompt
st.session_state.output = output
st.session_state.history.append(input_text)
# Suggested Title Section
st.markdown("### πŸ“Œ Suggested Title")
title_area = st.text_area(
"",
value=st.session_state.get('title', ""),
height=70,
key="title_area",
help="AI-generated title based on the conversation content"
)
# Prompt Section
st.markdown("### πŸ“ Prompt")
prompt_area = st.text_area(
"",
value=st.session_state.get('prompt', ""),
height=200,
key="prompt_area",
help="The extracted prompt will appear here"
)
# Display prompt stats
prompt_words, prompt_chars = count_text_stats(st.session_state.get('prompt', ""))
st.markdown(f"<p class='stats-text'>Words: {prompt_words} | Characters: {prompt_chars}</p>", unsafe_allow_html=True)
if st.button("πŸ“‹ Copy Prompt", use_container_width=True):
pyperclip.copy(st.session_state.get('prompt', ""))
st.success("Copied prompt to clipboard!")
# Output Section
st.markdown("### πŸ€– Output")
output_area = st.text_area(
"",
value=st.session_state.get('output', ""),
height=200,
key="output_area",
help="The extracted output will appear here"
)
# Display output stats
output_words, output_chars = count_text_stats(st.session_state.get('output', ""))
st.markdown(f"<p class='stats-text'>Words: {output_words} | Characters: {output_chars}</p>", unsafe_allow_html=True)
if st.button("πŸ“‹ Copy Output", use_container_width=True):
pyperclip.copy(st.session_state.get('output', ""))
st.success("Copied output to clipboard!")
# File Processing Tab
with tabs[1]:
st.subheader("File Processing")
uploaded_file = st.file_uploader("Choose a file", type=['txt', 'csv'])
if uploaded_file is not None:
try:
if uploaded_file.type == "text/csv":
df = pd.read_csv(uploaded_file)
column = st.selectbox("Select column to process", df.columns)
if st.button("Process CSV"):
with st.spinner("Processing..."):
processed_df = process_column(df[column])
st.write(processed_df)
st.download_button(
"Download Processed CSV",
processed_df.to_csv(index=False),
"processed_data.csv",
"text/csv"
)
else:
content = uploaded_file.getvalue().decode("utf-8")
if st.button("Process Text File"):
with st.spinner("Processing..."):
title, prompt, output = separate_prompt_output(content)
st.session_state.title = title
st.session_state.prompt = prompt
st.session_state.output = output
st.session_state.history.append(content)
st.experimental_rerun()
except Exception as e:
st.error(f"Error processing file: {str(e)}")
# History Tab
with tabs[2]:
st.subheader("Processing History")
if st.session_state.history:
if st.button("πŸ—‘οΈ Clear History", type="secondary"):
st.session_state.history = []
st.experimental_rerun()
for idx, item in enumerate(reversed(st.session_state.history)):
with st.expander(f"Entry {len(st.session_state.history) - idx}", expanded=False):
st.text_area(
"Content",
value=item,
height=150,
key=f"history_{idx}",
disabled=True
)
else:
st.info("πŸ’‘ No processing history available yet. Process some text to see it here.")
# Footer
st.markdown("---")
st.markdown(
"""
<div style='text-align: center'>
<p>Created by <a href="https://github.com/danielrosehill/Prompt-And-Output-Separator">Daniel Rosehill</a></p>
</div>
""",
unsafe_allow_html=True
)
# Custom CSS for stats text to prevent them from overlapping
st.markdown("""
<style>
.stats-text {
text-align: left;
font-size: 0.8em;
color: #888; /* Darker gray to fit the style */
margin-top: -10px; /* push the stats closer to the textarea */
margin-bottom: 10px;
}
</style>
""", unsafe_allow_html=True)
# Custom CSS to style dark mode
if st.session_state.mode == 'dark':
st.markdown("""
<style>
body {
color: #fff;
background-color: #262730;
}
.stTextInput, .stTextArea, .stNumberInput, .stSelectbox, .stRadio, .stCheckbox, .stSlider, .stDateInput, .stTimeInput {
background-color: #3d3d4d; /* Darker background for input widgets */
color: #fff; /* White text for better contrast */
}
.stButton>button {
background-color: #5c5c7a; /* Adjust button color */
color: white;
}
.stButton>button:hover {
background-color: #6e6e8a;
color: white;
}
.streamlit-expanderHeader {
background-color: #3d3d4d !important;
color: #fff !important;
}
.streamlit-expanderContent {
background-color: #3d3d4d !important;
}
.streamlit-container {
background-color: #262730;
}
.stAlert {
background-color: #3d3d4d !important;
color: #fff !important;
}
.st-ba {
background-color: #3d3d4d; /* Makes the body background dark */
color: #fff;
}
.css-10trblm {
background-color: #3d3d4d;
color: #fff;
}
.css-qbe2hs {
color: #fff;
}
.css-1wtrr7o {
color: #fff;
}
.css-103n16l {
color: #fff;
}
.css-10pw50 {
color: #fff;
}
.css-z5fcl4 {
color: #fff;
}
.css-1d391kg {
color: #fff;
}
</style>
""", unsafe_allow_html=True)