File size: 11,152 Bytes
d796c69 5c2a16c d796c69 5c2a16c d796c69 5c2a16c d796c69 5c2a16c d796c69 5c2a16c d796c69 5c2a16c d796c69 5c2a16c d796c69 5c2a16c d796c69 5c2a16c d796c69 5c2a16c d796c69 5c2a16c d796c69 5c2a16c d796c69 5c2a16c d796c69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import streamlit as st
import pandas as pd
import re
import time
import os
from io import StringIO
import pyperclip
from openai import OpenAI
import json
# Page Configuration
st.set_page_config(
page_title="Prompt Output Separator",
page_icon="βοΈ",
layout="wide",
initial_sidebar_state="expanded"
)
# Initialize session state variables
if 'openai_api_key' not in st.session_state:
st.session_state.openai_api_key = None
if 'history' not in st.session_state:
st.session_state.history = []
if 'prompt' not in st.session_state:
st.session_state.prompt = ""
if 'output' not in st.session_state:
st.session_state.output = ""
if 'title' not in st.session_state:
st.session_state.title = ""
if 'mode' not in st.session_state:
st.session_state.mode = 'light'
def count_text_stats(text):
words = len(text.split())
chars = len(text)
return words, chars
def analyze_with_llm(text):
if not st.session_state.openai_api_key:
st.error("Please provide an OpenAI API key in the sidebar")
return None, None, None
try:
client = OpenAI(api_key=st.session_state.openai_api_key)
response = client.chat.completions.create(
model="gpt-3.5-turbo-1106",
messages=[
{
"role": "system",
"content": """You are a text analysis expert. Your task is to separate a conversation into the prompt/question and the response/answer. Return ONLY a JSON object with three fields: - title: a short, descriptive title for the conversation (max 6 words) - prompt: the user's question or prompt - output: the response or answer If you cannot clearly identify any part, set it to null."""
},
{
"role": "user",
"content": f"Please analyze this text and separate it into title, prompt and output: {text}"
}
],
temperature=0,
response_format={"type": "json_object"}
)
result = response.choices[0].message.content
parsed = json.loads(result)
return parsed.get("title"), parsed.get("prompt"), parsed.get("output")
except Exception as e:
st.error(f"Error analyzing text: {str(e)}. The error was: {e}")
return None, None, None
def separate_prompt_output(text):
if not text:
return "", "", ""
if st.session_state.openai_api_key:
title, prompt, output = analyze_with_llm(text)
if all(v is not None for v in [title, prompt, output]):
return title, prompt, output
parts = text.split('\n\n', 1)
if len(parts) == 2:
return "Untitled Conversation", parts[0].strip(), parts[1].strip()
return "Untitled Conversation", text.strip(), ""
def process_column(column):
processed_data = []
for item in column:
title, prompt, output = separate_prompt_output(str(item))
processed_data.append({"Title": title, "Prompt": prompt, "Output": output})
return pd.DataFrame(processed_data)
# Sidebar configuration
with st.sidebar:
st.image("https://img.icons8.com/color/96/000000/chat.png", width=50)
st.markdown("## π οΈ Configuration")
api_key = st.text_input("Enter OpenAI API Key", type="password")
if api_key:
st.session_state.openai_api_key = api_key
# Dark mode toggle using checkbox
st.markdown("---")
st.markdown("## π¨ Appearance")
dark_mode = st.checkbox("Dark Mode", value=st.session_state.mode == 'dark')
st.session_state.mode = 'dark' if dark_mode else 'light'
# Main interface
st.title("βοΈ Prompt Output Separator")
st.markdown(
"Utility to assist with separating prompts and outputs when they are recorded in a unified block of text. For cost-optimisation, uses GPT 3.5.")
# Tabs with icons
tabs = st.tabs(["π Paste Text", "π File Processing", "π History"])
# Paste Text Tab
with tabs[0]:
st.subheader("Paste Prompt and Output")
# Input area with placeholder
input_container = st.container()
with input_container:
input_text = st.text_area(
"Paste your conversation here...",
height=200,
placeholder="Paste your conversation here. The tool will automatically separate the prompt from the output.",
help="Enter the text you want to separate into prompt and output."
)
# Process button
if st.button("π Process", use_container_width=True) and input_text:
with st.spinner("Processing..."):
title, prompt, output = separate_prompt_output(input_text)
st.session_state.title = title
st.session_state.prompt = prompt
st.session_state.output = output
st.session_state.history.append(input_text)
# Suggested Title Section
st.markdown("### π Suggested Title")
title_area = st.text_area(
"",
value=st.session_state.get('title', ""),
height=70,
key="title_area",
help="AI-generated title based on the conversation content"
)
# Prompt Section
st.markdown("### π Prompt")
prompt_area = st.text_area(
"",
value=st.session_state.get('prompt', ""),
height=200,
key="prompt_area",
help="The extracted prompt will appear here"
)
# Display prompt stats
prompt_words, prompt_chars = count_text_stats(st.session_state.get('prompt', ""))
st.markdown(f"<p class='stats-text'>Words: {prompt_words} | Characters: {prompt_chars}</p>", unsafe_allow_html=True)
if st.button("π Copy Prompt", use_container_width=True):
pyperclip.copy(st.session_state.get('prompt', ""))
st.success("Copied prompt to clipboard!")
# Output Section
st.markdown("### π€ Output")
output_area = st.text_area(
"",
value=st.session_state.get('output', ""),
height=200,
key="output_area",
help="The extracted output will appear here"
)
# Display output stats
output_words, output_chars = count_text_stats(st.session_state.get('output', ""))
st.markdown(f"<p class='stats-text'>Words: {output_words} | Characters: {output_chars}</p>", unsafe_allow_html=True)
if st.button("π Copy Output", use_container_width=True):
pyperclip.copy(st.session_state.get('output', ""))
st.success("Copied output to clipboard!")
# File Processing Tab
with tabs[1]:
st.subheader("File Processing")
uploaded_file = st.file_uploader("Choose a file", type=['txt', 'csv'])
if uploaded_file is not None:
try:
if uploaded_file.type == "text/csv":
df = pd.read_csv(uploaded_file)
column = st.selectbox("Select column to process", df.columns)
if st.button("Process CSV"):
with st.spinner("Processing..."):
processed_df = process_column(df[column])
st.write(processed_df)
st.download_button(
"Download Processed CSV",
processed_df.to_csv(index=False),
"processed_data.csv",
"text/csv"
)
else:
content = uploaded_file.getvalue().decode("utf-8")
if st.button("Process Text File"):
with st.spinner("Processing..."):
title, prompt, output = separate_prompt_output(content)
st.session_state.title = title
st.session_state.prompt = prompt
st.session_state.output = output
st.session_state.history.append(content)
st.experimental_rerun()
except Exception as e:
st.error(f"Error processing file: {str(e)}")
# History Tab
with tabs[2]:
st.subheader("Processing History")
if st.session_state.history:
if st.button("ποΈ Clear History", type="secondary"):
st.session_state.history = []
st.experimental_rerun()
for idx, item in enumerate(reversed(st.session_state.history)):
with st.expander(f"Entry {len(st.session_state.history) - idx}", expanded=False):
st.text_area(
"Content",
value=item,
height=150,
key=f"history_{idx}",
disabled=True
)
else:
st.info("π‘ No processing history available yet. Process some text to see it here.")
# Footer
st.markdown("---")
st.markdown(
"""
<div style='text-align: center'>
<p>Created by <a href="https://github.com/danielrosehill/Prompt-And-Output-Separator">Daniel Rosehill</a></p>
</div>
""",
unsafe_allow_html=True
)
# Custom CSS for stats text to prevent them from overlapping
st.markdown("""
<style>
.stats-text {
text-align: left;
font-size: 0.8em;
color: #888; /* Darker gray to fit the style */
margin-top: -10px; /* push the stats closer to the textarea */
margin-bottom: 10px;
}
</style>
""", unsafe_allow_html=True)
# Custom CSS to style dark mode
if st.session_state.mode == 'dark':
st.markdown("""
<style>
body {
color: #fff;
background-color: #262730;
}
.stTextInput, .stTextArea, .stNumberInput, .stSelectbox, .stRadio, .stCheckbox, .stSlider, .stDateInput, .stTimeInput {
background-color: #3d3d4d; /* Darker background for input widgets */
color: #fff; /* White text for better contrast */
}
.stButton>button {
background-color: #5c5c7a; /* Adjust button color */
color: white;
}
.stButton>button:hover {
background-color: #6e6e8a;
color: white;
}
.streamlit-expanderHeader {
background-color: #3d3d4d !important;
color: #fff !important;
}
.streamlit-expanderContent {
background-color: #3d3d4d !important;
}
.streamlit-container {
background-color: #262730;
}
.stAlert {
background-color: #3d3d4d !important;
color: #fff !important;
}
.st-ba {
background-color: #3d3d4d; /* Makes the body background dark */
color: #fff;
}
.css-10trblm {
background-color: #3d3d4d;
color: #fff;
}
.css-qbe2hs {
color: #fff;
}
.css-1wtrr7o {
color: #fff;
}
.css-103n16l {
color: #fff;
}
.css-10pw50 {
color: #fff;
}
.css-z5fcl4 {
color: #fff;
}
.css-1d391kg {
color: #fff;
}
</style>
""", unsafe_allow_html=True) |