Spaces:
Sleeping
Sleeping
import ee | |
''' 0 Good quality fire | |
1 Good quality fire-free land | |
2 Invalid due to opaque cloud | |
3 Invalid due to surface type or sunglint or LZA threshold exceeded or off earth or missing input data | |
4 Invalid due to bad input data | |
5 Invalid due to algorithm failure''' | |
# Bit-masking | |
BitMask_0 = 1 << 0 | |
BitMask_1 = 1 << 1 | |
BitMask_2 = 1 << 2 | |
BitMask_3 = 1 << 3 | |
BitMask_4 = 1 << 4 | |
BitMask_5 = 1 << 5 | |
BitMask_6 = 1 << 6 | |
BitMask_7 = 1 << 7 | |
BitMask_8 = 1 << 8 | |
BitMask_9 = 1 << 9 | |
def GcalcNBR (goesImg, aoi): | |
#day = ee.Date(eachImg.get('system:time_start')).get('day','America/Los_Angeles') | |
fireMode = goesImg.select('fireMode') | |
fireMin = goesImg.select('fireMin') | |
CMI_QF3 = goesImg.select('DQF_C03').int() | |
CMI_QF6 = goesImg.select('DQF_C06').int() | |
# To include active fire pixels - fireMin.lt(2)\ for next line | |
QF_Mask = (fireMin.eq(1)\ | |
.Or(fireMin.gt(3)))\ | |
.And(CMI_QF3.lt(2))\ | |
.And(CMI_QF6.lt(2))\ | |
.rename('QFmask'); | |
GOESm = goesImg.select(['CMI_C03','CMI_C06']).updateMask(QF_Mask) | |
NBR = GOESm.normalizedDifference(['CMI_C03', 'CMI_C06']).toFloat().rename('NBR') | |
return goesImg.addBands([NBR,QF_Mask]) | |
def GcalcCCsingle (goesImg): | |
fireDQF = goesImg.select('DQF').int() | |
CMI_QF3 = goesImg.select('DQF_C03').int() | |
CMI_QF6 = goesImg.select('DQF_C06').int() | |
#Right now, cloud mask is excluding clouds and water; active fire, bad data and fire free are unmasked. NBR mask exlcudes fire | |
F_Mask = fireDQF.eq(0) | |
C_Mask = (fireDQF.lt(2).Or(fireDQF.gt(2))).rename('C_Mask') | |
#.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('C_Mask') | |
QF_Mask = (fireDQF.eq(1).Or(fireDQF.gt(3)))\ | |
.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('QFmask') | |
GOESmasked = goesImg.select(['CMI_C03','CMI_C06']).updateMask(QF_Mask) | |
NBRmasked = GOESmasked.normalizedDifference(['CMI_C03', 'CMI_C06']).toFloat().rename('NBR') | |
cloudMasked = goesImg.select('CMI_C03').updateMask(C_Mask).toFloat().rename('CC') | |
fireMasked = goesImg.select('CMI_C03').updateMask(F_Mask).toFloat().rename('FC') | |
return goesImg.addBands([NBRmasked,cloudMasked, fireMasked,QF_Mask,C_Mask]) | |
'''Parameter Array Name Value Bit(s) = Value | |
Sun Glint QF1 Surface Reflectance None 6-7 = 00 | |
Low Sun Mask QF1 Surface Reflectance High 5 = 0 | |
Day/Night QF1 Surface Reflectance Day 4 =0 | |
Cloud Detection QF1 Surface Reflectance Confident Clear 2-3 = 00 or Problably Clear 2-3 = 01 | |
Cloud Mask Quality QF1 Surface Reflectance High or Medium 0-1 = 10 or 11 | |
Snow/Ice QF2 Surface Reflectance No Snow or Ice 5 = 0 | |
Cloud Shadow QF2 Surface Reflectance No Cloud Shadow 3 = 0 | |
LandWater QF2 Surface Reflectance Land, Snow, Arctic, Antarctic or Greenland, Desert 0-2 = 011, 100, 101, 110, 111 | |
Thin Cirrus Flag QF7 Surface Reflectance No Thin Cirrus 4 = 0 | |
Aerosol Quantity QF7 Surface Reflectance Climatology, Low or Medium 2-3 = 00, 01 or 10 | |
Adjacent to Cloud QF7 Surface Reflectance Not Adjacent to Cloud 1 = 0''' | |
def VcalcNBR (VIIRSimg): | |
QF1 = VIIRSimg.select('QF1').int() | |
QF2 = VIIRSimg.select('QF2').int() | |
QF7 = VIIRSimg.select('QF7').int() | |
QF_Mask = (QF1.bitwiseAnd(BitMask_3).eq(0)).And\ | |
((QF2.bitwiseAnd(BitMask_2).eq(4)).Or((QF2.bitwiseAnd(BitMask_1).eq(0)))).And\ | |
(QF2.bitwiseAnd(BitMask_5).eq(0)).rename('QFmask'); | |
VIIRSm = VIIRSimg.select(['I2','M11']).updateMask(QF_Mask); | |
NBR = VIIRSm.normalizedDifference(['I2','M11']).toFloat().rename('NBR') | |
return VIIRSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR) | |
''' Bit 1: Dilated Cloud | |
Bit 2: Cirrus (high confidence) | |
Bit 3: Cloud | |
Bit 4: Cloud Shadow | |
Bit 5: Snow | |
Bit 6: Clear (0: Cloud or Dilated Cloud bits are set, 1: Cloud and Dilated Cloud bits are not set) | |
Bit 7: Water | |
Bits 8-9: Cloud Confidence (0: None, 1: Low, 2: Medium, 3: High) | |
Bits 10-11: Cloud Shadow Confidence (0: None, 1: Low, 2: Medium, 3: High) | |
Bits 12-13: Snow/Ice Confidence (0: None, 1: Low, 2: Medium, 3: High) | |
Bits 14-15: Cirrus Confidence (0: None, 1: Low, 2: Medium, 3: High)''' | |
def LcalcNBR (LSimg): | |
QApixel = LSimg.select('QA_PIXEL').int() | |
QF_Mask =(QApixel.bitwiseAnd(BitMask_3).eq(0)).And\ | |
(QApixel.bitwiseAnd(BitMask_5).eq(0)).And\ | |
(QApixel.bitwiseAnd(BitMask_7).eq(0)).rename('QFmask'); | |
LSmasked = LSimg.select(['SR_B5','SR_B7']).updateMask(QF_Mask); | |
NBR = LSmasked.normalizedDifference(['SR_B5','SR_B7']).toFloat().rename('NBR') | |
return LSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR) | |
''' 1 Saturated or defective | |
2 Dark Area Pixels | |
3 Cloud Shadows | |
4 Vegetation | |
5 Bare Soils | |
6 Water | |
7 Clouds Low Probability / Unclassified | |
8 Clouds Medium Probability | |
9 Clouds High Probability | |
10 Cirrus | |
11 Snow / Ice''' | |
def ScalcNBR (sentImg): | |
SCL = sentImg.select('SCL'); | |
QF_Mask =(SCL.neq(6)).And\ | |
(SCL.neq(8)).And\ | |
(SCL.neq(9)).And\ | |
(SCL.neq(11))\ | |
.rename('QFmask'); | |
sentMasked = sentImg.select(['B8A','B12']).updateMask(QF_Mask); #B8 is another option- broadband NIR | |
NBR = sentMasked.normalizedDifference(['B8A','B12']).toFloat().rename('NBR') | |
return sentImg.addBands(NBR).addBands(QF_Mask).addBands(SCL)#.set('avgNBR', avgNBR) |