Spaces:
Sleeping
Sleeping
Upload 16 files
Browse files- Dockerfile +30 -0
- Home.py +44 -0
- LICENSE +21 -0
- README.md +58 -0
- __init__.py +0 -0
- __pycache__/NBR_calculations.cpython-312.pyc +0 -0
- current_fires.py +399 -0
- historical_fires.py +429 -0
- pages/Home.py +44 -0
- pages/__init__.py +0 -0
- pages/__pycache__/NBR_calculations.cpython-312.pyc +0 -0
- pages/current_fires.py +399 -0
- pages/historical_fires.py +429 -0
- requirements.txt +6 -0
- utils/NBR_calculations.py +130 -0
- utils/__init__.py +0 -0
Dockerfile
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM jupyter/base-notebook:latest
|
2 |
+
|
3 |
+
# Install required packages
|
4 |
+
RUN mamba install -c conda-forge leafmap geopandas localtileserver -y && \
|
5 |
+
fix-permissions "${CONDA_DIR}" && \
|
6 |
+
fix-permissions "/home/${NB_USER}"
|
7 |
+
|
8 |
+
# Copy the requirements file and install dependencies
|
9 |
+
COPY requirements.txt .
|
10 |
+
RUN pip install -r requirements.txt
|
11 |
+
|
12 |
+
# Copy the entire project directory into the container
|
13 |
+
COPY . /home/${NB_USER}
|
14 |
+
|
15 |
+
# Set the working directory
|
16 |
+
WORKDIR /home/${NB_USER}
|
17 |
+
|
18 |
+
# Set the PROJ_LIB environment variable
|
19 |
+
ENV PROJ_LIB='/opt/conda/share/proj'
|
20 |
+
|
21 |
+
# Ensure the notebook user owns the home directory
|
22 |
+
USER root
|
23 |
+
RUN chown -R ${NB_UID} ${HOME}
|
24 |
+
USER ${NB_USER}
|
25 |
+
|
26 |
+
# Expose the port for Solara
|
27 |
+
EXPOSE 8765
|
28 |
+
|
29 |
+
# Run the Solara app
|
30 |
+
CMD ["solara", "run", "pages", "--host=0.0.0.0"]
|
Home.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import solara
|
2 |
+
|
3 |
+
@solara.component
|
4 |
+
def Page():
|
5 |
+
with solara.Column(align="center"):
|
6 |
+
markdown = """
|
7 |
+
## Real-time wildfire burn mapping
|
8 |
+
|
9 |
+
### About the project
|
10 |
+
|
11 |
+
**A proof of concept illustrating wildfire burn severity maps with emerging clarity while the fires progress.
|
12 |
+
Target users are forecasters and emergency managers responding to post-fire risks including debris flows and landslides.**
|
13 |
+
|
14 |
+
More project description, etc, etc.
|
15 |
+
|
16 |
+
**Case Studies from 2020 and 2021 Western US wildfire seasons **
|
17 |
+
|
18 |
+
- August Complex, CA (2020)
|
19 |
+
- Cameron Peak, CO (2020)
|
20 |
+
- Dixie Fire, CA (2021)
|
21 |
+
- North Complex, CA (2020)
|
22 |
+
|
23 |
+
|
24 |
+
**Current 2024 wildfires over 10,000 acres **
|
25 |
+
|
26 |
+
### How to use the app
|
27 |
+
|
28 |
+
1. Select the fire from the drop-down menu
|
29 |
+
|
30 |
+
2. Export image to Google Drive as a geotiff
|
31 |
+
|
32 |
+
3.
|
33 |
+
|
34 |
+
### Support
|
35 |
+
|
36 |
+
Initial funding for wildland burn scar mapping came through the NOAA JPSS/RRPG Fire and Smoke Initiative.
|
37 |
+
This supported the initial tests of BRIDGE maps using dNDVI. Subsequent funding supported the development of dNBR mapping and an effort
|
38 |
+
to tie support the near real-time distribution of incident-based fire detection and related satellite imagery products through the Next Generation Fire System (NGFS).
|
39 |
+
Current funding from the NOAA Weather Program Office (WPO) is supporting the refinement of our Google Earth Engine App (GEE)
|
40 |
+
and integration of GEE burn scar output with AWIPS (see example above) for Weather Forecast Offices, Regional Offices, and the Weather Prediction Center.
|
41 |
+
|
42 |
+
"""
|
43 |
+
|
44 |
+
solara.Markdown(markdown)
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 Open Geospatial Solutions
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Solara Geemap
|
3 |
+
emoji: 🏃
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
license: mit
|
9 |
+
app_port: 8765
|
10 |
+
---
|
11 |
+
|
12 |
+
## Earth Engine Web Apps
|
13 |
+
|
14 |
+
### Introduction
|
15 |
+
|
16 |
+
**A collection of Earth Engine web apps developed using [Solara](https://github.com/widgetti/solara) and geemap**
|
17 |
+
|
18 |
+
- Web App: <https://giswqs-solara-geemap.hf.space>
|
19 |
+
- GitHub: <https://github.com/opengeos/solara-geemap>
|
20 |
+
- Hugging Face: <https://huggingface.co/spaces/giswqs/solara-geemap>
|
21 |
+
|
22 |
+
### How to deploy this app on Hugging Face Spaces
|
23 |
+
|
24 |
+
1. Go to <https://huggingface.co/spaces/giswqs/solara-geemap/tree/main> and duplicate the space to your own space.
|
25 |
+
|
26 |
+

|
27 |
+
|
28 |
+
2. You need to set `EARTHENGINE_TOKEN` in order to use Earth Engine. The token value should be copied from the following file depending on your operating system:
|
29 |
+
|
30 |
+
```text
|
31 |
+
Windows: C:\\Users\\USERNAME\\.config\\earthengine\\credentials
|
32 |
+
Linux: /home/USERNAME/.config/earthengine/credentials
|
33 |
+
MacOS: /Users/USERNAME/.config/earthengine/credentials
|
34 |
+
```
|
35 |
+
|
36 |
+
Simply open the file and copy **ALL** the content to the `EARTHENGINE_TOKEN` environment variable.
|
37 |
+
|
38 |
+

|
39 |
+
|
40 |
+

|
41 |
+
|
42 |
+
Alternatively, you can run the following code to retrieve your Earth Engine token:
|
43 |
+
|
44 |
+
```python
|
45 |
+
import geemap
|
46 |
+
geemap.get_ee_token()
|
47 |
+
```
|
48 |
+
|
49 |
+
Copy all the content of the printed token and set it as the `EARTHENGINE_TOKEN` environment variable.
|
50 |
+
|
51 |
+
3. After the space is built successfully, click the `Embed this Space` menu and find the `Direct URL` for the app, such as <https://giswqs-solara-geemap.hf.space>.
|
52 |
+
|
53 |
+

|
54 |
+
|
55 |
+

|
56 |
+
|
57 |
+
4. Add your own apps (\*.py) to the `pages` folder.
|
58 |
+
5. Commit and push your changes to the repository. Wait for the space to be built successfully.
|
__init__.py
ADDED
File without changes
|
__pycache__/NBR_calculations.cpython-312.pyc
ADDED
Binary file (6.87 kB). View file
|
|
current_fires.py
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ee
|
2 |
+
import geemap
|
3 |
+
import solara
|
4 |
+
import ipywidgets as widgets
|
5 |
+
import datetime
|
6 |
+
|
7 |
+
#from NBR_calculations import GcalcNBR, VcalcNBR, LcalcNBR, ScalcNBR, GcalcCCsingle
|
8 |
+
import requests
|
9 |
+
|
10 |
+
# Bit-masking
|
11 |
+
BitMask_0 = 1 << 0
|
12 |
+
BitMask_1 = 1 << 1
|
13 |
+
BitMask_2 = 1 << 2
|
14 |
+
BitMask_3 = 1 << 3
|
15 |
+
BitMask_4 = 1 << 4
|
16 |
+
BitMask_5 = 1 << 5
|
17 |
+
BitMask_6 = 1 << 6
|
18 |
+
BitMask_7 = 1 << 7
|
19 |
+
BitMask_8 = 1 << 8
|
20 |
+
BitMask_9 = 1 << 9
|
21 |
+
|
22 |
+
def GcalcCCsingle (goesImg):
|
23 |
+
|
24 |
+
fireDQF = goesImg.select('DQF').int()
|
25 |
+
CMI_QF3 = goesImg.select('DQF_C03').int()
|
26 |
+
CMI_QF6 = goesImg.select('DQF_C06').int()
|
27 |
+
|
28 |
+
#Right now, cloud mask is excluding clouds and water; active fire, bad data and fire free are unmasked. NBR mask exlcudes fire
|
29 |
+
F_Mask = fireDQF.eq(0)
|
30 |
+
C_Mask = (fireDQF.lt(2).Or(fireDQF.gt(2))).rename('C_Mask')
|
31 |
+
#.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('C_Mask')
|
32 |
+
QF_Mask = (fireDQF.eq(1).Or(fireDQF.gt(3)))\
|
33 |
+
.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('QFmask')
|
34 |
+
|
35 |
+
GOESmasked = goesImg.select(['CMI_C03','CMI_C06']).updateMask(QF_Mask)
|
36 |
+
NBRmasked = GOESmasked.normalizedDifference(['CMI_C03', 'CMI_C06']).toFloat().rename('NBR')
|
37 |
+
cloudMasked = goesImg.select('CMI_C03').updateMask(C_Mask).toFloat().rename('CC')
|
38 |
+
fireMasked = goesImg.select('CMI_C03').updateMask(F_Mask).toFloat().rename('FC')
|
39 |
+
|
40 |
+
return goesImg.addBands([NBRmasked,cloudMasked, fireMasked,QF_Mask,C_Mask])
|
41 |
+
|
42 |
+
'''Parameter Array Name Value Bit(s) = Value
|
43 |
+
Sun Glint QF1 Surface Reflectance None 6-7 = 00
|
44 |
+
Low Sun Mask QF1 Surface Reflectance High 5 = 0
|
45 |
+
Day/Night QF1 Surface Reflectance Day 4 =0
|
46 |
+
Cloud Detection QF1 Surface Reflectance Confident Clear 2-3 = 00 or Problably Clear 2-3 = 01
|
47 |
+
Cloud Mask Quality QF1 Surface Reflectance High or Medium 0-1 = 10 or 11
|
48 |
+
Snow/Ice QF2 Surface Reflectance No Snow or Ice 5 = 0
|
49 |
+
Cloud Shadow QF2 Surface Reflectance No Cloud Shadow 3 = 0
|
50 |
+
LandWater QF2 Surface Reflectance Land, Snow, Arctic, Antarctic or Greenland, Desert 0-2 = 011, 100, 101, 110, 111
|
51 |
+
Thin Cirrus Flag QF7 Surface Reflectance No Thin Cirrus 4 = 0
|
52 |
+
Aerosol Quantity QF7 Surface Reflectance Climatology, Low or Medium 2-3 = 00, 01 or 10
|
53 |
+
Adjacent to Cloud QF7 Surface Reflectance Not Adjacent to Cloud 1 = 0'''
|
54 |
+
|
55 |
+
def VcalcNBR (VIIRSimg):
|
56 |
+
|
57 |
+
QF1 = VIIRSimg.select('QF1').int()
|
58 |
+
QF2 = VIIRSimg.select('QF2').int()
|
59 |
+
QF7 = VIIRSimg.select('QF7').int()
|
60 |
+
|
61 |
+
QF_Mask = (QF1.bitwiseAnd(BitMask_3).eq(0)).And\
|
62 |
+
((QF2.bitwiseAnd(BitMask_2).eq(4)).Or((QF2.bitwiseAnd(BitMask_1).eq(0)))).And\
|
63 |
+
(QF2.bitwiseAnd(BitMask_5).eq(0)).rename('QFmask');
|
64 |
+
|
65 |
+
VIIRSm = VIIRSimg.select(['I2','M11']).updateMask(QF_Mask);
|
66 |
+
NBR = VIIRSm.normalizedDifference(['I2','M11']).toFloat().rename('NBR')
|
67 |
+
return VIIRSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR)
|
68 |
+
|
69 |
+
''' Bit 1: Dilated Cloud
|
70 |
+
Bit 2: Cirrus (high confidence)
|
71 |
+
Bit 3: Cloud
|
72 |
+
Bit 4: Cloud Shadow
|
73 |
+
Bit 5: Snow
|
74 |
+
Bit 6: Clear (0: Cloud or Dilated Cloud bits are set, 1: Cloud and Dilated Cloud bits are not set)
|
75 |
+
Bit 7: Water
|
76 |
+
Bits 8-9: Cloud Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
77 |
+
Bits 10-11: Cloud Shadow Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
78 |
+
Bits 12-13: Snow/Ice Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
79 |
+
Bits 14-15: Cirrus Confidence (0: None, 1: Low, 2: Medium, 3: High)'''
|
80 |
+
|
81 |
+
def LcalcNBR (LSimg):
|
82 |
+
QApixel = LSimg.select('QA_PIXEL').int()
|
83 |
+
QF_Mask =(QApixel.bitwiseAnd(BitMask_3).eq(0)).And\
|
84 |
+
(QApixel.bitwiseAnd(BitMask_5).eq(0)).And\
|
85 |
+
(QApixel.bitwiseAnd(BitMask_7).eq(0)).rename('QFmask');
|
86 |
+
|
87 |
+
LSmasked = LSimg.select(['SR_B5','SR_B7']).updateMask(QF_Mask);
|
88 |
+
NBR = LSmasked.normalizedDifference(['SR_B5','SR_B7']).toFloat().rename('NBR')
|
89 |
+
return LSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR)
|
90 |
+
|
91 |
+
''' 1 Saturated or defective
|
92 |
+
2 Dark Area Pixels
|
93 |
+
3 Cloud Shadows
|
94 |
+
4 Vegetation
|
95 |
+
5 Bare Soils
|
96 |
+
6 Water
|
97 |
+
7 Clouds Low Probability / Unclassified
|
98 |
+
8 Clouds Medium Probability
|
99 |
+
9 Clouds High Probability
|
100 |
+
10 Cirrus
|
101 |
+
11 Snow / Ice'''
|
102 |
+
|
103 |
+
def ScalcNBR (sentImg):
|
104 |
+
SCL = sentImg.select('SCL');
|
105 |
+
QF_Mask =(SCL.neq(6)).And\
|
106 |
+
(SCL.neq(8)).And\
|
107 |
+
(SCL.neq(9)).And\
|
108 |
+
(SCL.neq(11))\
|
109 |
+
.rename('QFmask');
|
110 |
+
sentMasked = sentImg.select(['B8A','B12']).updateMask(QF_Mask); #B8 is another option- broadband NIR
|
111 |
+
NBR = sentMasked.normalizedDifference(['B8A','B12']).toFloat().rename('NBR')
|
112 |
+
return sentImg.addBands(NBR).addBands(QF_Mask).addBands(SCL)#.set('avgNBR', avgNBR)
|
113 |
+
|
114 |
+
#createDates = NIFC_perims_716.aggregate_array('attr_Cre_1')
|
115 |
+
#incidentIDs = NIFC_perims_716.aggregate_array('poly_Incid')
|
116 |
+
#fireList = incidentIDs.getInfo()
|
117 |
+
fireList = wildfire_names = [ "FRESNO JUNE LIGHTNING COMPLEX", "Larch Creek","Deadman","Cow Valley","0404 RV LONE ROCK",
|
118 |
+
"PIONEER","South Fork", "Deer Springs","Basin","Lake","Horse Gulch","Falls","Silver King","Indios"]
|
119 |
+
selected_fire = solara.reactive(fireList[6])
|
120 |
+
dNBRvisParams = {'min': 0.0,'max': 0.8, 'palette': ['green', 'yellow','orange','red']}
|
121 |
+
today = datetime.datetime.today().strftime('%Y-%m-%d')
|
122 |
+
|
123 |
+
class Map(geemap.Map):
|
124 |
+
def __init__(self, **kwargs):
|
125 |
+
super().__init__(**kwargs)
|
126 |
+
self.add_basemap('OpenStreetMap')
|
127 |
+
|
128 |
+
self.customize_ee_data(selected_fire.value, today)
|
129 |
+
self.add_selector()
|
130 |
+
self.add_dwnldButton()
|
131 |
+
self.add("layer_manager")
|
132 |
+
self.remove("draw_control")
|
133 |
+
|
134 |
+
|
135 |
+
def customize_ee_data(self, fireID, elapDays):
|
136 |
+
NIFC_perims_716 = ee.FeatureCollection('projects/ovcrge-ssec-burn-scar-map-c116/assets/NIFC_perimeters_7-16')
|
137 |
+
fire = NIFC_perims_716.filter(ee.Filter.eq('poly_Incid',fireID)).first()
|
138 |
+
timestamp = fire.get('attr_Cre_1')
|
139 |
+
geom = fire.geometry()
|
140 |
+
|
141 |
+
startDate = ee.Date(timestamp)#.format('YYYY-MM-dd')
|
142 |
+
endDate = ee.Date.parse('YYYY-MM-dd', str(today))
|
143 |
+
|
144 |
+
boundingBox = ee.Geometry(geom.buffer(5000).bounds())
|
145 |
+
|
146 |
+
elapDayNum = ee.Number(10)
|
147 |
+
elapDay_plusOne = elapDayNum.add(ee.Number(1))
|
148 |
+
|
149 |
+
def calc_nbr(pre_start, pre_stop, post_start, post_stop, bbox, goes):
|
150 |
+
|
151 |
+
def MergeBands (eachImage):
|
152 |
+
oneImage = ee.Image.cat(eachImage.get('CMI'), eachImage.get('FDC'))
|
153 |
+
return oneImage
|
154 |
+
displacementImg18 = ee.Image.load('projects/ee-losos/assets/G18-F-meter-offset_GEE')
|
155 |
+
y_dif = displacementImg18.select([1])
|
156 |
+
x_dif = displacementImg18.select([0]).multiply(-1)
|
157 |
+
displacement18 = ee.Image([x_dif, y_dif])
|
158 |
+
|
159 |
+
displacementImg16 = ee.Image.load('projects/ee-losos/assets/G16-F-meter-offset_GEE')
|
160 |
+
y_dif = displacementImg16.select([1])
|
161 |
+
x_dif = displacementImg16.select([0]).multiply(-1)
|
162 |
+
displacement16 = ee.Image([x_dif, y_dif]);
|
163 |
+
|
164 |
+
preCMIcol = ee.ImageCollection(f"NOAA/GOES/{goes}/MCMIPF").filter(ee.Filter.date(pre_start, pre_stop))\
|
165 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
166 |
+
preFDCcol = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(pre_start, pre_stop))\
|
167 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
168 |
+
postCMIcol = ee.ImageCollection(f"NOAA/GOES/{goes}/MCMIPF").filter(ee.Filter.date(post_start, post_stop))\
|
169 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
170 |
+
postFDCcol = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(post_start, post_stop))\
|
171 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
172 |
+
|
173 |
+
prejoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
174 |
+
primary = preCMIcol,
|
175 |
+
secondary = preFDCcol,
|
176 |
+
condition = ee.Filter.maxDifference(
|
177 |
+
difference = 10, #milliseconds
|
178 |
+
leftField = 'system:time_start',
|
179 |
+
rightField = 'system:time_start',))
|
180 |
+
preMiddayGOEScol = ee.ImageCollection(prejoinedGOES.map(lambda object: MergeBands(object)))
|
181 |
+
preMiddayGOEScol = preMiddayGOEScol.map(GcalcCCsingle)
|
182 |
+
pre_meanNBR = preMiddayGOEScol.select(['NBR']).mean()
|
183 |
+
pre_meanNBR = pre_meanNBR.multiply(1.18).subtract(0.12)
|
184 |
+
|
185 |
+
postjoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
186 |
+
primary = postCMIcol,
|
187 |
+
secondary = postFDCcol,
|
188 |
+
condition = ee.Filter.maxDifference(
|
189 |
+
difference = 10, #milliseconds
|
190 |
+
leftField = 'system:time_start',
|
191 |
+
rightField = 'system:time_start',))
|
192 |
+
postMiddayGOEScol = ee.ImageCollection(postjoinedGOES.map(lambda object: MergeBands(object)))
|
193 |
+
postMiddayGOEScol = postMiddayGOEScol.map(GcalcCCsingle)
|
194 |
+
post_meanNBR = postMiddayGOEScol.select(['NBR']).mean()
|
195 |
+
post_meanNBR = post_meanNBR.multiply(1.18).subtract(0.12)
|
196 |
+
|
197 |
+
dNBR_goes17 = pre_meanNBR.subtract(post_meanNBR).select('NBR')
|
198 |
+
|
199 |
+
|
200 |
+
#GOES-16
|
201 |
+
preCMIcol = ee.ImageCollection("NOAA/GOES/16/MCMIPF").filter(ee.Filter.date(pre_start, pre_stop))\
|
202 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
203 |
+
preFDCcol = ee.ImageCollection("NOAA/GOES/16/FDCF").filter(ee.Filter.date(pre_start, pre_stop))\
|
204 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
205 |
+
|
206 |
+
prejoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
207 |
+
primary = preCMIcol,
|
208 |
+
secondary = preFDCcol,
|
209 |
+
condition = ee.Filter.maxDifference(
|
210 |
+
difference = 10, #milliseconds
|
211 |
+
leftField = 'system:time_start',
|
212 |
+
rightField = 'system:time_start',))
|
213 |
+
preMiddayGOEScol = ee.ImageCollection(prejoinedGOES.map(lambda object: MergeBands(object)))
|
214 |
+
preMiddayGOEScol = preMiddayGOEScol.map(GcalcCCsingle)
|
215 |
+
pre_meanNBR = preMiddayGOEScol.select(['NBR']).mean()
|
216 |
+
pre_meanNBR = pre_meanNBR.multiply(1.18).subtract(0.12)
|
217 |
+
|
218 |
+
|
219 |
+
postCMIcol = ee.ImageCollection("NOAA/GOES/16/MCMIPF").filter(ee.Filter.date(post_start, post_stop))\
|
220 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
221 |
+
postFDCcol = ee.ImageCollection("NOAA/GOES/16/FDCF").filter(ee.Filter.date(post_start, post_stop))\
|
222 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
223 |
+
|
224 |
+
postjoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
225 |
+
primary = postCMIcol,
|
226 |
+
secondary = postFDCcol,
|
227 |
+
condition = ee.Filter.maxDifference(
|
228 |
+
difference = 10, #milliseconds
|
229 |
+
leftField = 'system:time_start',
|
230 |
+
rightField = 'system:time_start',))
|
231 |
+
postMiddayGOEScol = ee.ImageCollection(postjoinedGOES.map(lambda object: MergeBands(object)))
|
232 |
+
postMiddayGOEScol = postMiddayGOEScol.map(GcalcCCsingle)
|
233 |
+
post_meanNBR = postMiddayGOEScol.select(['NBR']).mean()
|
234 |
+
post_meanNBR = post_meanNBR.multiply(1.18).subtract(0.12)
|
235 |
+
|
236 |
+
dNBR_goes16 = pre_meanNBR.subtract(post_meanNBR).select('NBR')
|
237 |
+
|
238 |
+
dNBRclip_goes17= dNBR_goes17.clip(bbox)
|
239 |
+
dNBRclip_goes16= dNBR_goes16.clip(bbox)
|
240 |
+
dNBRdisp_goes17 = dNBRclip_goes17.displace(displacement18, 'bicubic')
|
241 |
+
dNBRdisp_goes16 = dNBRclip_goes16.displace(displacement16, 'bicubic')
|
242 |
+
dNBRgoes_compos = ee.ImageCollection([dNBRdisp_goes17,dNBRdisp_goes16]).mean()
|
243 |
+
|
244 |
+
#ACTIVE fire
|
245 |
+
activeFire18 = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(pre_stop, post_stop))
|
246 |
+
activeFire16 = ee.ImageCollection(f"NOAA/GOES/16/FDCF").filter(ee.Filter.date(pre_stop, post_stop))
|
247 |
+
sumFRP18 = activeFire18.select('Power').sum().rename('sumFRP')
|
248 |
+
sumFRP16 = activeFire16.select('Power').sum().rename('sumFRP')
|
249 |
+
maskNoFire18 = sumFRP18.gt(200).displace(displacement18, 'bicubic')
|
250 |
+
maskNoFire16 = sumFRP16.gt(200).displace(displacement16, 'bicubic')
|
251 |
+
maskNoFire = ee.ImageCollection([maskNoFire18,maskNoFire16]).sum().gt(0)
|
252 |
+
|
253 |
+
'''
|
254 |
+
activeSNPP = ee.ImageCollection("NASA/LANCE/SNPP_VIIRS/C2").filter(ee.Filter.date(pre_stop, post_stop))
|
255 |
+
activeNOAA20 = ee.ImageCollection("NASA/LANCE/NOAA20_VIIRS/C2").filter(ee.Filter.date(pre_stop, post_stop))
|
256 |
+
sumFRP_SNPP = activeSNPP.select('confidence').max().rename('sumFRP')
|
257 |
+
sumFRP_NOAA20 = activeNOAA20.select('confidence').max().rename('sumFRP')
|
258 |
+
#maskNoFire = ee.ImageCollection([sumFRP_SNPP,sumFRP_NOAA20]).sum().gt(0)
|
259 |
+
maskNoFire = sumFRP_SNPP.gt(0)
|
260 |
+
'''
|
261 |
+
|
262 |
+
#VIIRS
|
263 |
+
preVIIRSimg = ee.ImageCollection("NASA/VIIRS/002/VNP09GA").filter(ee.Filter.date(pre_start, pre_stop)).mean()
|
264 |
+
postVIIRSimgCol = ee.ImageCollection("NASA/VIIRS/002/VNP09GA").filter(ee.Filter.date(post_start, post_stop)) #TO FIX ON JUNE 18 sfork_startDate.advance(24, 'day'), sfork_startDate.advance(25,'day')
|
265 |
+
|
266 |
+
#Landsat
|
267 |
+
prelandsat8col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox)
|
268 |
+
postlandsat8col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").filterDate(post_start, post_stop).filterBounds(bbox)
|
269 |
+
prelandsat9col = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox)
|
270 |
+
postlandsat9col = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2").filterDate(post_start, post_stop).filterBounds(bbox)
|
271 |
+
prelandsatcol = prelandsat8col.merge(prelandsat9col)
|
272 |
+
postlandsatcol = postlandsat8col.merge(postlandsat9col)
|
273 |
+
|
274 |
+
#Sentinel
|
275 |
+
presentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox)
|
276 |
+
postsentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(post_start, post_stop).filterBounds(bbox) #TO FIX on JULY 5: sfork_startDate.advance(32, 'day'), sfork_startDate.advance(33,'day')
|
277 |
+
#olderPostSentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(sfork_startDate.advance(37, 'day'), sfork_startDate.advance(38,'day')).filterBounds(bbox)
|
278 |
+
|
279 |
+
#SAR
|
280 |
+
#SARimg = ee.Image('projects/ovcrge-ssec-burn-scar-map-c116/assets/burned_20200907_20200919_test')
|
281 |
+
#SARmask = SARimg.eq(1)
|
282 |
+
|
283 |
+
if postVIIRSimgCol.size().getInfo() > 0:
|
284 |
+
postVIIRSimg = postVIIRSimgCol.mean()
|
285 |
+
preVIIRSimg = VcalcNBR(preVIIRSimg)
|
286 |
+
postVIIRSimg = VcalcNBR(postVIIRSimg)
|
287 |
+
dNBR_viirs = preVIIRSimg.subtract(postVIIRSimg).select('NBR')
|
288 |
+
dNBRclip_viirs = dNBR_viirs.clip(bbox)
|
289 |
+
else:
|
290 |
+
dNBR_composite = dNBRgoes_compos
|
291 |
+
if postsentCol.size().getInfo() > 0:
|
292 |
+
presentMean = presentCol.mean()
|
293 |
+
postsentMean = postsentCol.mean()
|
294 |
+
presentImg = ScalcNBR(presentMean)
|
295 |
+
postsentImg = ScalcNBR(postsentMean)
|
296 |
+
dnbr_sent = presentImg.subtract(postsentImg).multiply(1.3).add(0.05).select('NBR')
|
297 |
+
dNBRclip_sent = dnbr_sent.clip(bbox)
|
298 |
+
dNBR_composite = ee.ImageCollection([dNBRgoes_compos,dNBRclip_sent]).mosaic() #dNBRclip_viirs SHOULD GO IN IF UP TO DATE
|
299 |
+
elif postlandsatcol.size().getInfo() > 0:
|
300 |
+
prelandsat = prelandsatcol.mean()
|
301 |
+
prelandsatImg = LcalcNBR(prelandsat)
|
302 |
+
postlandsat = postlandsatcol.mean()
|
303 |
+
postlandsatImg = LcalcNBR(postlandsat)
|
304 |
+
dNBR_landsat = prelandsatImg.subtract(postlandsatImg).multiply(3.23).add(0.01).select('NBR')
|
305 |
+
dNBRclip_ls = dNBR_landsat.clip(bbox)
|
306 |
+
dNBR_composite = ee.ImageCollection([dNBRgoes_compos,dNBRclip_ls]).mosaic() #dNBRclip_viirs SHOULD GO IN IF UP TO DATE
|
307 |
+
else:
|
308 |
+
dNBR_composite = ee.ImageCollection([dNBRgoes_compos]).mosaic() #dNBRclip_viirs SHOULD GO IN IF UP TO DATE
|
309 |
+
|
310 |
+
masked_compos = dNBR_composite.updateMask(maskNoFire) #(SARmask)
|
311 |
+
#doubleMasked_compos = masked_compos.updateMask(maskNoFire)
|
312 |
+
doubleMasked_compos = masked_compos.mask(masked_compos.mask()).float()
|
313 |
+
downloadArgs = {'name': 'VIIRS_burnMap',
|
314 |
+
'crs': 'EPSG:4326',
|
315 |
+
'scale': 60,
|
316 |
+
'region': bbox}
|
317 |
+
url = doubleMasked_compos.getDownloadURL(downloadArgs)
|
318 |
+
|
319 |
+
print(url)
|
320 |
+
noDataVal = -9999
|
321 |
+
unmaskedImage = doubleMasked_compos.unmask(noDataVal, False)
|
322 |
+
|
323 |
+
task = ee.batch.Export.image.toDrive(**{
|
324 |
+
'image': unmaskedImage,
|
325 |
+
'description': "Composite_burnMap6",
|
326 |
+
'folder': "Earth Engine Outputs",
|
327 |
+
'fileNamePrefix': "Composite_burnMap_noData_VIIRS_June18_espg3857_60m",
|
328 |
+
'region': bbox,
|
329 |
+
'crs': 'EPSG:3857',
|
330 |
+
'scale': 60,})
|
331 |
+
task.start()
|
332 |
+
return masked_compos
|
333 |
+
|
334 |
+
|
335 |
+
self.clear_specific_layers()
|
336 |
+
|
337 |
+
fireImg = calc_nbr(startDate.advance(-7, 'day'), startDate, endDate.advance(-3, 'day'), endDate, boundingBox, 18)
|
338 |
+
self.addLayer(fireImg, dNBRvisParams, fireID, True)
|
339 |
+
self.centerObject(boundingBox, 10)
|
340 |
+
file = fireImg
|
341 |
+
|
342 |
+
|
343 |
+
def clear_specific_layers(self):
|
344 |
+
layers_to_keep = ['OpenStreetMap']
|
345 |
+
layers = list(self.layers)
|
346 |
+
for layer in layers:
|
347 |
+
if layer.name not in layers_to_keep:
|
348 |
+
self.remove_layer(layer)
|
349 |
+
|
350 |
+
|
351 |
+
def add_selector(self):
|
352 |
+
selector = widgets.Dropdown(options=fireList, value=fireList[6], description='Current wildfire :', style={'description_width': '125px'}, layout=widgets.Layout(width='400px'))
|
353 |
+
|
354 |
+
def on_selector_change(change):
|
355 |
+
if change['name'] == 'value':
|
356 |
+
selected_fire.value = change['new']
|
357 |
+
self.customize_ee_data(selected_fire.value, today)
|
358 |
+
|
359 |
+
selector.observe(on_selector_change, names='value')
|
360 |
+
self.add_widget(selector, position="topleft")
|
361 |
+
|
362 |
+
|
363 |
+
def add_dwnldButton(self):
|
364 |
+
button = widgets.Button(description='Export to Drive',icon='cloud-arrow-down')
|
365 |
+
|
366 |
+
#def on_button_click(change, file):
|
367 |
+
# if change['name'] == 'value':
|
368 |
+
# selected_days.value = change['new']
|
369 |
+
# self.download_ee_image(file, "trial_file.tif", scale=30)
|
370 |
+
def on_button_click(b):
|
371 |
+
# Get the currently selected fire and elapsed days
|
372 |
+
fire = selected_fire.value
|
373 |
+
elapDays = today
|
374 |
+
|
375 |
+
# Customize the EE data and download the image
|
376 |
+
file = self.customize_ee_data(fire, elapDays)
|
377 |
+
#self.download_ee_image(file, f"{fire}_NBR_{elapDays}days.tif", scale=30)
|
378 |
+
|
379 |
+
button.observe(on_button_click)
|
380 |
+
self.add_widget(button, position="topleft")
|
381 |
+
|
382 |
+
|
383 |
+
|
384 |
+
@solara.component
|
385 |
+
def Page():
|
386 |
+
|
387 |
+
with solara.Column(align="center"):
|
388 |
+
markdown = """
|
389 |
+
## Current 2024 wildfires over 10,000 acres"""
|
390 |
+
solara.Markdown(markdown)
|
391 |
+
|
392 |
+
# Isolation is required to prevent the map from overlapping navigation (when screen width < 960px)
|
393 |
+
with solara.Column(style={"isolation": "isolate"}):
|
394 |
+
map_widget = Map.element(
|
395 |
+
center=[39, -120.5],
|
396 |
+
zoom=8,
|
397 |
+
height="600px",
|
398 |
+
toolbar_ctrl=False
|
399 |
+
)
|
historical_fires.py
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ee
|
2 |
+
import geemap
|
3 |
+
import solara
|
4 |
+
import ipywidgets as widgets
|
5 |
+
#from NBR_calculations import GcalcNBR, VcalcNBR, LcalcNBR, ScalcNBR, GcalcCCsingle
|
6 |
+
import requests
|
7 |
+
|
8 |
+
# Bit-masking
|
9 |
+
BitMask_0 = 1 << 0
|
10 |
+
BitMask_1 = 1 << 1
|
11 |
+
BitMask_2 = 1 << 2
|
12 |
+
BitMask_3 = 1 << 3
|
13 |
+
BitMask_4 = 1 << 4
|
14 |
+
BitMask_5 = 1 << 5
|
15 |
+
BitMask_6 = 1 << 6
|
16 |
+
BitMask_7 = 1 << 7
|
17 |
+
BitMask_8 = 1 << 8
|
18 |
+
BitMask_9 = 1 << 9
|
19 |
+
|
20 |
+
def GcalcCCsingle (goesImg):
|
21 |
+
|
22 |
+
fireDQF = goesImg.select('DQF').int()
|
23 |
+
CMI_QF3 = goesImg.select('DQF_C03').int()
|
24 |
+
CMI_QF6 = goesImg.select('DQF_C06').int()
|
25 |
+
|
26 |
+
#Right now, cloud mask is excluding clouds and water; active fire, bad data and fire free are unmasked. NBR mask exlcudes fire
|
27 |
+
F_Mask = fireDQF.eq(0)
|
28 |
+
C_Mask = (fireDQF.lt(2).Or(fireDQF.gt(2))).rename('C_Mask')
|
29 |
+
#.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('C_Mask')
|
30 |
+
QF_Mask = (fireDQF.eq(1).Or(fireDQF.gt(3)))\
|
31 |
+
.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('QFmask')
|
32 |
+
|
33 |
+
GOESmasked = goesImg.select(['CMI_C03','CMI_C06']).updateMask(QF_Mask)
|
34 |
+
NBRmasked = GOESmasked.normalizedDifference(['CMI_C03', 'CMI_C06']).toFloat().rename('NBR')
|
35 |
+
cloudMasked = goesImg.select('CMI_C03').updateMask(C_Mask).toFloat().rename('CC')
|
36 |
+
fireMasked = goesImg.select('CMI_C03').updateMask(F_Mask).toFloat().rename('FC')
|
37 |
+
|
38 |
+
return goesImg.addBands([NBRmasked,cloudMasked, fireMasked,QF_Mask,C_Mask])
|
39 |
+
|
40 |
+
'''Parameter Array Name Value Bit(s) = Value
|
41 |
+
Sun Glint QF1 Surface Reflectance None 6-7 = 00
|
42 |
+
Low Sun Mask QF1 Surface Reflectance High 5 = 0
|
43 |
+
Day/Night QF1 Surface Reflectance Day 4 =0
|
44 |
+
Cloud Detection QF1 Surface Reflectance Confident Clear 2-3 = 00 or Problably Clear 2-3 = 01
|
45 |
+
Cloud Mask Quality QF1 Surface Reflectance High or Medium 0-1 = 10 or 11
|
46 |
+
Snow/Ice QF2 Surface Reflectance No Snow or Ice 5 = 0
|
47 |
+
Cloud Shadow QF2 Surface Reflectance No Cloud Shadow 3 = 0
|
48 |
+
LandWater QF2 Surface Reflectance Land, Snow, Arctic, Antarctic or Greenland, Desert 0-2 = 011, 100, 101, 110, 111
|
49 |
+
Thin Cirrus Flag QF7 Surface Reflectance No Thin Cirrus 4 = 0
|
50 |
+
Aerosol Quantity QF7 Surface Reflectance Climatology, Low or Medium 2-3 = 00, 01 or 10
|
51 |
+
Adjacent to Cloud QF7 Surface Reflectance Not Adjacent to Cloud 1 = 0'''
|
52 |
+
|
53 |
+
def VcalcNBR (VIIRSimg):
|
54 |
+
|
55 |
+
QF1 = VIIRSimg.select('QF1').int()
|
56 |
+
QF2 = VIIRSimg.select('QF2').int()
|
57 |
+
QF7 = VIIRSimg.select('QF7').int()
|
58 |
+
|
59 |
+
QF_Mask = (QF1.bitwiseAnd(BitMask_3).eq(0)).And\
|
60 |
+
((QF2.bitwiseAnd(BitMask_2).eq(4)).Or((QF2.bitwiseAnd(BitMask_1).eq(0)))).And\
|
61 |
+
(QF2.bitwiseAnd(BitMask_5).eq(0)).rename('QFmask');
|
62 |
+
|
63 |
+
VIIRSm = VIIRSimg.select(['I2','M11']).updateMask(QF_Mask);
|
64 |
+
NBR = VIIRSm.normalizedDifference(['I2','M11']).toFloat().rename('NBR')
|
65 |
+
return VIIRSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR)
|
66 |
+
|
67 |
+
''' Bit 1: Dilated Cloud
|
68 |
+
Bit 2: Cirrus (high confidence)
|
69 |
+
Bit 3: Cloud
|
70 |
+
Bit 4: Cloud Shadow
|
71 |
+
Bit 5: Snow
|
72 |
+
Bit 6: Clear (0: Cloud or Dilated Cloud bits are set, 1: Cloud and Dilated Cloud bits are not set)
|
73 |
+
Bit 7: Water
|
74 |
+
Bits 8-9: Cloud Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
75 |
+
Bits 10-11: Cloud Shadow Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
76 |
+
Bits 12-13: Snow/Ice Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
77 |
+
Bits 14-15: Cirrus Confidence (0: None, 1: Low, 2: Medium, 3: High)'''
|
78 |
+
|
79 |
+
def LcalcNBR (LSimg):
|
80 |
+
QApixel = LSimg.select('QA_PIXEL').int()
|
81 |
+
QF_Mask =(QApixel.bitwiseAnd(BitMask_3).eq(0)).And\
|
82 |
+
(QApixel.bitwiseAnd(BitMask_5).eq(0)).And\
|
83 |
+
(QApixel.bitwiseAnd(BitMask_7).eq(0)).rename('QFmask');
|
84 |
+
|
85 |
+
LSmasked = LSimg.select(['SR_B5','SR_B7']).updateMask(QF_Mask);
|
86 |
+
NBR = LSmasked.normalizedDifference(['SR_B5','SR_B7']).toFloat().rename('NBR')
|
87 |
+
return LSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR)
|
88 |
+
|
89 |
+
''' 1 Saturated or defective
|
90 |
+
2 Dark Area Pixels
|
91 |
+
3 Cloud Shadows
|
92 |
+
4 Vegetation
|
93 |
+
5 Bare Soils
|
94 |
+
6 Water
|
95 |
+
7 Clouds Low Probability / Unclassified
|
96 |
+
8 Clouds Medium Probability
|
97 |
+
9 Clouds High Probability
|
98 |
+
10 Cirrus
|
99 |
+
11 Snow / Ice'''
|
100 |
+
|
101 |
+
def ScalcNBR (sentImg):
|
102 |
+
SCL = sentImg.select('SCL');
|
103 |
+
QF_Mask =(SCL.neq(6)).And\
|
104 |
+
(SCL.neq(8)).And\
|
105 |
+
(SCL.neq(9)).And\
|
106 |
+
(SCL.neq(11))\
|
107 |
+
.rename('QFmask');
|
108 |
+
sentMasked = sentImg.select(['B8A','B12']).updateMask(QF_Mask); #B8 is another option- broadband NIR
|
109 |
+
NBR = sentMasked.normalizedDifference(['B8A','B12']).toFloat().rename('NBR')
|
110 |
+
return sentImg.addBands(NBR).addBands(QF_Mask).addBands(SCL)#.set('avgNBR', avgNBR)
|
111 |
+
|
112 |
+
|
113 |
+
fireList = ["North Complex", "Dixie", "Cameron Peak", "August Complex", "South Fork"]
|
114 |
+
selected_fire = solara.reactive(fireList[4])
|
115 |
+
selected_days = solara.reactive(25) #30
|
116 |
+
dNBRvisParams = {'min': 0.0,'max': 0.8, 'palette': ['green', 'yellow','orange','red']}
|
117 |
+
|
118 |
+
|
119 |
+
class Map(geemap.Map):
|
120 |
+
def __init__(self, **kwargs):
|
121 |
+
super().__init__(**kwargs)
|
122 |
+
self.add_basemap('OpenStreetMap')
|
123 |
+
self.customize_ee_data(selected_fire.value, selected_days.value)
|
124 |
+
self.add_selector()
|
125 |
+
self.add_intSlider()
|
126 |
+
self.add_dwnldButton()
|
127 |
+
self.add("layer_manager")
|
128 |
+
self.remove("draw_control")
|
129 |
+
|
130 |
+
|
131 |
+
def customize_ee_data(self, fire, elapDays):
|
132 |
+
elapDayNum = ee.Number(elapDays)
|
133 |
+
elapDay_plusOne = elapDayNum.add(ee.Number(1))
|
134 |
+
|
135 |
+
north_startDate = ee.Date('2020-08-16')
|
136 |
+
dixie_startDate = ee.Date('2021-07-13')
|
137 |
+
cam_startDate = ee.Date('2020-08-13')
|
138 |
+
aug_startDate = ee.Date('2020-08-15')
|
139 |
+
sfork_startDate = ee.Date('2024-05-25')
|
140 |
+
|
141 |
+
north_complex_bb = ee.Geometry.BBox(-121.616097, 39.426723, -120.668526, 40.030845)
|
142 |
+
dixie_bb = ee.Geometry.BBox(-121.680467, 39.759303, -120.065477, 40.873387)
|
143 |
+
cam_peak_bb = ee.Geometry.BBox(-106.014784, 40.377907, -105.116651, 40.822094)
|
144 |
+
aug_complex_bb = ee.Geometry.BBox(-123.668726, 39.337654, -122.355860, 40.498304)
|
145 |
+
sfork_bb = ee.Geometry.BBox(-106.192, 33.1, -105.065, 33.782)
|
146 |
+
|
147 |
+
def calc_nbr(pre_start, pre_stop, post_start, post_stop, bbox, goes):
|
148 |
+
def MergeBands (eachImage):
|
149 |
+
oneImage = ee.Image.cat(eachImage.get('CMI'), eachImage.get('FDC'))
|
150 |
+
return oneImage
|
151 |
+
displacementImg18 = ee.Image.load('projects/ee-losos/assets/G18-F-meter-offset_GEE')
|
152 |
+
y_dif = displacementImg18.select([1])
|
153 |
+
x_dif = displacementImg18.select([0]).multiply(-1)
|
154 |
+
displacement18 = ee.Image([x_dif, y_dif])
|
155 |
+
|
156 |
+
displacementImg16 = ee.Image.load('projects/ee-losos/assets/G16-F-meter-offset_GEE')
|
157 |
+
y_dif = displacementImg16.select([1])
|
158 |
+
x_dif = displacementImg16.select([0]).multiply(-1)
|
159 |
+
displacement16 = ee.Image([x_dif, y_dif]);
|
160 |
+
|
161 |
+
preCMIcol = ee.ImageCollection(f"NOAA/GOES/{goes}/MCMIPF").filter(ee.Filter.date(pre_start, pre_stop))\
|
162 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
163 |
+
preFDCcol = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(pre_start, pre_stop))\
|
164 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
165 |
+
postCMIcol = ee.ImageCollection(f"NOAA/GOES/{goes}/MCMIPF").filter(ee.Filter.date(post_start, post_stop))\
|
166 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
167 |
+
postFDCcol = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(post_start, post_stop))\
|
168 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
169 |
+
|
170 |
+
prejoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
171 |
+
primary = preCMIcol,
|
172 |
+
secondary = preFDCcol,
|
173 |
+
condition = ee.Filter.maxDifference(
|
174 |
+
difference = 10, #milliseconds
|
175 |
+
leftField = 'system:time_start',
|
176 |
+
rightField = 'system:time_start',))
|
177 |
+
preMiddayGOEScol = ee.ImageCollection(prejoinedGOES.map(lambda object: MergeBands(object)))
|
178 |
+
preMiddayGOEScol = preMiddayGOEScol.map(GcalcCCsingle)
|
179 |
+
pre_meanNBR = preMiddayGOEScol.select(['NBR']).mean()
|
180 |
+
pre_meanNBR = pre_meanNBR.multiply(1.18).subtract(0.12)
|
181 |
+
|
182 |
+
postjoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
183 |
+
primary = postCMIcol,
|
184 |
+
secondary = postFDCcol,
|
185 |
+
condition = ee.Filter.maxDifference(
|
186 |
+
difference = 10, #milliseconds
|
187 |
+
leftField = 'system:time_start',
|
188 |
+
rightField = 'system:time_start',))
|
189 |
+
postMiddayGOEScol = ee.ImageCollection(postjoinedGOES.map(lambda object: MergeBands(object)))
|
190 |
+
postMiddayGOEScol = postMiddayGOEScol.map(GcalcCCsingle)
|
191 |
+
post_meanNBR = postMiddayGOEScol.select(['NBR']).mean()
|
192 |
+
post_meanNBR = post_meanNBR.multiply(1.18).subtract(0.12)
|
193 |
+
|
194 |
+
dNBR_goes17 = pre_meanNBR.subtract(post_meanNBR).select('NBR')
|
195 |
+
|
196 |
+
|
197 |
+
#GOES-16
|
198 |
+
preCMIcol = ee.ImageCollection("NOAA/GOES/16/MCMIPF").filter(ee.Filter.date(pre_start, pre_stop))\
|
199 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
200 |
+
preFDCcol = ee.ImageCollection("NOAA/GOES/16/FDCF").filter(ee.Filter.date(pre_start, pre_stop))\
|
201 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
202 |
+
|
203 |
+
prejoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
204 |
+
primary = preCMIcol,
|
205 |
+
secondary = preFDCcol,
|
206 |
+
condition = ee.Filter.maxDifference(
|
207 |
+
difference = 10, #milliseconds
|
208 |
+
leftField = 'system:time_start',
|
209 |
+
rightField = 'system:time_start',))
|
210 |
+
preMiddayGOEScol = ee.ImageCollection(prejoinedGOES.map(lambda object: MergeBands(object)))
|
211 |
+
preMiddayGOEScol = preMiddayGOEScol.map(GcalcCCsingle)
|
212 |
+
pre_meanNBR = preMiddayGOEScol.select(['NBR']).mean()
|
213 |
+
pre_meanNBR = pre_meanNBR.multiply(1.18).subtract(0.12)
|
214 |
+
|
215 |
+
|
216 |
+
postCMIcol = ee.ImageCollection("NOAA/GOES/16/MCMIPF").filter(ee.Filter.date(post_start, post_stop))\
|
217 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
218 |
+
postFDCcol = ee.ImageCollection("NOAA/GOES/16/FDCF").filter(ee.Filter.date(post_start, post_stop))\
|
219 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
220 |
+
|
221 |
+
postjoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
222 |
+
primary = postCMIcol,
|
223 |
+
secondary = postFDCcol,
|
224 |
+
condition = ee.Filter.maxDifference(
|
225 |
+
difference = 10, #milliseconds
|
226 |
+
leftField = 'system:time_start',
|
227 |
+
rightField = 'system:time_start',))
|
228 |
+
postMiddayGOEScol = ee.ImageCollection(postjoinedGOES.map(lambda object: MergeBands(object)))
|
229 |
+
postMiddayGOEScol = postMiddayGOEScol.map(GcalcCCsingle)
|
230 |
+
post_meanNBR = postMiddayGOEScol.select(['NBR']).mean()
|
231 |
+
post_meanNBR = post_meanNBR.multiply(1.18).subtract(0.12)
|
232 |
+
|
233 |
+
dNBR_goes16 = pre_meanNBR.subtract(post_meanNBR).select('NBR')
|
234 |
+
|
235 |
+
dNBRclip_goes17= dNBR_goes17.clip(bbox)
|
236 |
+
dNBRclip_goes16= dNBR_goes16.clip(bbox)
|
237 |
+
dNBRdisp_goes17 = dNBRclip_goes17.displace(displacement18, 'bicubic')
|
238 |
+
dNBRdisp_goes16 = dNBRclip_goes16.displace(displacement16, 'bicubic')
|
239 |
+
dNBRgoes_compos = ee.ImageCollection([dNBRdisp_goes17,dNBRdisp_goes16]).mean()
|
240 |
+
|
241 |
+
#ACTIVE fire
|
242 |
+
activeFire18 = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(pre_stop, post_stop))
|
243 |
+
activeFire16 = ee.ImageCollection(f"NOAA/GOES/16/FDCF").filter(ee.Filter.date(pre_stop, post_stop))
|
244 |
+
sumFRP18 = activeFire18.select('Power').sum().rename('sumFRP')
|
245 |
+
sumFRP16 = activeFire16.select('Power').sum().rename('sumFRP')
|
246 |
+
maskNoFire18 = sumFRP18.gt(200).displace(displacement18, 'bicubic')
|
247 |
+
maskNoFire16 = sumFRP16.gt(200).displace(displacement16, 'bicubic')
|
248 |
+
maskNoFire = ee.ImageCollection([maskNoFire18,maskNoFire16]).sum().gt(0)
|
249 |
+
|
250 |
+
'''
|
251 |
+
activeSNPP = ee.ImageCollection("NASA/LANCE/SNPP_VIIRS/C2").filter(ee.Filter.date(pre_stop, post_stop))
|
252 |
+
activeNOAA20 = ee.ImageCollection("NASA/LANCE/NOAA20_VIIRS/C2").filter(ee.Filter.date(pre_stop, post_stop))
|
253 |
+
sumFRP_SNPP = activeSNPP.select('confidence').max().rename('sumFRP')
|
254 |
+
sumFRP_NOAA20 = activeNOAA20.select('confidence').max().rename('sumFRP')
|
255 |
+
#maskNoFire = ee.ImageCollection([sumFRP_SNPP,sumFRP_NOAA20]).sum().gt(0)
|
256 |
+
maskNoFire = sumFRP_SNPP.gt(0)
|
257 |
+
'''
|
258 |
+
|
259 |
+
#VIIRS
|
260 |
+
preVIIRSimg = ee.ImageCollection("NASA/VIIRS/002/VNP09GA").filter(ee.Filter.date(pre_start, pre_stop)).mean()
|
261 |
+
#postVIIRSimgCol = ee.ImageCollection("NASA/VIIRS/002/VNP09GA").filter(ee.Filter.date(post_start, post_stop))
|
262 |
+
postVIIRSimgCol = ee.ImageCollection("NASA/VIIRS/002/VNP09GA").filter(ee.Filter.date(post_start, post_stop)) #TO FIX ON JUNE 18 sfork_startDate.advance(24, 'day'), sfork_startDate.advance(25,'day')
|
263 |
+
|
264 |
+
#Landsat
|
265 |
+
prelandsat8col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox)
|
266 |
+
postlandsat8col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").filterDate(post_start, post_stop).filterBounds(bbox)
|
267 |
+
prelandsat9col = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox)
|
268 |
+
postlandsat9col = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2").filterDate(post_start, post_stop).filterBounds(bbox)
|
269 |
+
prelandsatcol = prelandsat8col.merge(prelandsat9col)
|
270 |
+
postlandsatcol = postlandsat8col.merge(postlandsat9col)
|
271 |
+
|
272 |
+
#Sentinel
|
273 |
+
presentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox)
|
274 |
+
postsentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(post_start, post_stop).filterBounds(bbox) #TO FIX on JULY 5: sfork_startDate.advance(32, 'day'), sfork_startDate.advance(33,'day')
|
275 |
+
olderPostSentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(sfork_startDate.advance(37, 'day'), sfork_startDate.advance(38,'day')).filterBounds(bbox)
|
276 |
+
#SAR
|
277 |
+
#SARimg = ee.Image('projects/ovcrge-ssec-burn-scar-map-c116/assets/burned_20200907_20200919_test')
|
278 |
+
#SARmask = SARimg.eq(1)
|
279 |
+
if postVIIRSimgCol.size().getInfo() > 0:
|
280 |
+
postVIIRSimg = postVIIRSimgCol.mean()
|
281 |
+
preVIIRSimg = VcalcNBR(preVIIRSimg)
|
282 |
+
postVIIRSimg = VcalcNBR(postVIIRSimg)
|
283 |
+
dNBR_viirs = preVIIRSimg.subtract(postVIIRSimg).select('NBR')
|
284 |
+
dNBRclip_viirs = dNBR_viirs.clip(bbox)
|
285 |
+
else:
|
286 |
+
dNBR_composite = dNBRgoes_compos
|
287 |
+
if postsentCol.size().getInfo() > 0:
|
288 |
+
presentMean = presentCol.mean()
|
289 |
+
postsentMean = postsentCol.mean()
|
290 |
+
postsent2Mean = olderPostSentCol.mean()
|
291 |
+
presentImg = ScalcNBR(presentMean)
|
292 |
+
postsentImg = ScalcNBR(postsentMean)
|
293 |
+
postsentImg2 = ScalcNBR(postsent2Mean)
|
294 |
+
postSentCombo = ee.ImageCollection([postsentImg,postsentImg2]).mosaic()
|
295 |
+
dnbr_sent = presentImg.subtract(postSentCombo).multiply(1.3).add(0.05).select('NBR')
|
296 |
+
dNBRclip_sent = dnbr_sent.clip(bbox)
|
297 |
+
dNBR_composite = ee.ImageCollection([dNBRgoes_compos,dNBRclip_viirs,dNBRclip_sent]).mosaic()
|
298 |
+
elif postlandsatcol.size().getInfo() > 0:
|
299 |
+
print(postlandsatcol.size().getInfo())
|
300 |
+
prelandsat = prelandsatcol.mean()
|
301 |
+
prelandsatImg = LcalcNBR(prelandsat)
|
302 |
+
postlandsat = postlandsatcol.mean()
|
303 |
+
postlandsatImg = LcalcNBR(postlandsat)
|
304 |
+
dNBR_landsat = prelandsatImg.subtract(postlandsatImg).multiply(3.23).add(0.01).select('NBR')
|
305 |
+
dNBRclip_ls = dNBR_landsat.clip(bbox)
|
306 |
+
dNBR_composite = ee.ImageCollection([dNBRgoes_compos,dNBRclip_viirs,dNBRclip_ls]).mosaic()
|
307 |
+
else:
|
308 |
+
dNBR_composite = ee.ImageCollection([dNBRgoes_compos,dNBRclip_viirs]).mosaic()
|
309 |
+
|
310 |
+
masked_compos = dNBR_composite.updateMask(maskNoFire) #(SARmask)
|
311 |
+
#doubleMasked_compos = masked_compos.updateMask(maskNoFire)
|
312 |
+
doubleMasked_compos = masked_compos.mask(masked_compos.mask()).float()
|
313 |
+
downloadArgs = {'name': 'VIIRS_burnMap',
|
314 |
+
'crs': 'EPSG:4326',
|
315 |
+
'scale': 60,
|
316 |
+
'region': bbox}
|
317 |
+
url = doubleMasked_compos.getDownloadURL(downloadArgs)
|
318 |
+
|
319 |
+
print(url)
|
320 |
+
noDataVal = -9999
|
321 |
+
unmaskedImage = doubleMasked_compos.unmask(noDataVal, False)
|
322 |
+
|
323 |
+
task = ee.batch.Export.image.toDrive(**{
|
324 |
+
'image': unmaskedImage,
|
325 |
+
'description': "Composite_burnMap6",
|
326 |
+
'folder': "Earth Engine Outputs",
|
327 |
+
'fileNamePrefix': "Composite_burnMap_noData_VIIRS_June18_espg3857_60m",
|
328 |
+
'region': bbox,
|
329 |
+
'crs': 'EPSG:3857',
|
330 |
+
'scale': 60,})
|
331 |
+
#task.start()
|
332 |
+
return masked_compos
|
333 |
+
|
334 |
+
|
335 |
+
self.clear_specific_layers()
|
336 |
+
|
337 |
+
if fire == "North Complex":
|
338 |
+
north_complex = calc_nbr(north_startDate.advance(-7, 'day'), north_startDate, north_startDate.advance(elapDayNum, 'day'), north_startDate.advance(elapDay_plusOne,'day'), north_complex_bb, 17)
|
339 |
+
self.addLayer(north_complex, dNBRvisParams, 'North Complex GOES NBR', True)
|
340 |
+
self.centerObject(north_complex_bb, 9)
|
341 |
+
file = north_complex
|
342 |
+
elif fire == "Dixie":
|
343 |
+
dixie = calc_nbr(dixie_startDate.advance(-7, 'day'), dixie_startDate, dixie_startDate.advance(elapDayNum, 'day'), dixie_startDate.advance(elapDay_plusOne,'day'), dixie_bb, 17)
|
344 |
+
self.addLayer(dixie, dNBRvisParams, 'Dixie Complex GOES NBR', True)
|
345 |
+
self.centerObject(dixie_bb, 9)
|
346 |
+
file = dixie
|
347 |
+
elif fire == "Cameron Peak":
|
348 |
+
cam_peak = calc_nbr(cam_startDate.advance(-7, 'day'), cam_startDate, cam_startDate.advance(elapDayNum, 'day'), cam_startDate.advance(elapDay_plusOne,'day'), cam_peak_bb, 17)
|
349 |
+
self.addLayer(cam_peak, dNBRvisParams, 'Cameron Peak GOES NBR', True)
|
350 |
+
self.centerObject(cam_peak_bb, 9)
|
351 |
+
file = cam_peak
|
352 |
+
elif fire == "August Complex":
|
353 |
+
aug_complex = calc_nbr(aug_startDate.advance(-7, 'day'), aug_startDate, aug_startDate.advance(elapDayNum, 'day'), aug_startDate.advance(elapDay_plusOne,'day'), aug_complex_bb, 17)
|
354 |
+
self.addLayer(aug_complex, dNBRvisParams, 'August Complex GOES NBR', True)
|
355 |
+
self.centerObject(aug_complex_bb, 9)
|
356 |
+
file = aug_complex
|
357 |
+
elif fire == "South Fork":
|
358 |
+
sfork = calc_nbr(sfork_startDate.advance(-7, 'day'), sfork_startDate, sfork_startDate.advance(elapDayNum, 'day'), sfork_startDate.advance(elapDay_plusOne,'day'), sfork_bb, 18)
|
359 |
+
self.addLayer(sfork, dNBRvisParams, 'South Fork GOES NBR', True)
|
360 |
+
self.centerObject(sfork_bb, 9)
|
361 |
+
file = sfork
|
362 |
+
|
363 |
+
def clear_specific_layers(self):
|
364 |
+
layers_to_keep = ['OpenStreetMap']
|
365 |
+
layers = list(self.layers)
|
366 |
+
for layer in layers:
|
367 |
+
if layer.name not in layers_to_keep:
|
368 |
+
self.remove_layer(layer)
|
369 |
+
|
370 |
+
|
371 |
+
def add_selector(self):
|
372 |
+
selector = widgets.Dropdown(options=fireList, value="South Fork", description='Wildfire Case Study:', style={'description_width': '125px'}, layout=widgets.Layout(width='400px'))
|
373 |
+
|
374 |
+
def on_selector_change(change):
|
375 |
+
if change['name'] == 'value':
|
376 |
+
selected_fire.value = change['new']
|
377 |
+
self.customize_ee_data(selected_fire.value, selected_days.value)
|
378 |
+
|
379 |
+
selector.observe(on_selector_change, names='value')
|
380 |
+
self.add_widget(selector, position="topleft")
|
381 |
+
|
382 |
+
def add_intSlider(self):
|
383 |
+
slider = widgets.IntSlider(value=selected_days.value,min=1,max=40,step=1,description='Elapsed days:',style={'description_width': '125px'}, layout=widgets.Layout(width='400px'))
|
384 |
+
|
385 |
+
def on_slider_change(change):
|
386 |
+
if change['name'] == 'value':
|
387 |
+
selected_days.value = change['new']
|
388 |
+
self.customize_ee_data(selected_fire.value, selected_days.value)
|
389 |
+
|
390 |
+
slider.observe(on_slider_change, names='value')
|
391 |
+
self.add_widget(slider, position="topleft")
|
392 |
+
|
393 |
+
def add_dwnldButton(self):
|
394 |
+
button = widgets.Button(description='Download',icon='cloud-arrow-down')
|
395 |
+
|
396 |
+
#def on_button_click(change, file):
|
397 |
+
# if change['name'] == 'value':
|
398 |
+
# selected_days.value = change['new']
|
399 |
+
# self.download_ee_image(file, "trial_file.tif", scale=30)
|
400 |
+
def on_button_click(b):
|
401 |
+
# Get the currently selected fire and elapsed days
|
402 |
+
fire = selected_fire.value
|
403 |
+
elapDays = selected_days.value
|
404 |
+
|
405 |
+
# Customize the EE data and download the image
|
406 |
+
file = self.customize_ee_data(fire, elapDays)
|
407 |
+
#self.download_ee_image(file, f"{fire}_NBR_{elapDays}days.tif", scale=30)
|
408 |
+
|
409 |
+
button.observe(on_button_click)
|
410 |
+
self.add_widget(button, position="topleft")
|
411 |
+
|
412 |
+
|
413 |
+
|
414 |
+
@solara.component
|
415 |
+
def Page():
|
416 |
+
|
417 |
+
with solara.Column(align="center"):
|
418 |
+
markdown = """
|
419 |
+
## Historical Western US wildfires from 2020-2021 """
|
420 |
+
solara.Markdown(markdown)
|
421 |
+
|
422 |
+
# Isolation is required to prevent the map from overlapping navigation (when screen width < 960px)
|
423 |
+
with solara.Column(style={"isolation": "isolate"}):
|
424 |
+
map_widget = Map.element(
|
425 |
+
center=[39, -120.5],
|
426 |
+
zoom=8,
|
427 |
+
height="600px",
|
428 |
+
toolbar_ctrl=False
|
429 |
+
)
|
pages/Home.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import solara
|
2 |
+
|
3 |
+
@solara.component
|
4 |
+
def Page():
|
5 |
+
with solara.Column(align="center"):
|
6 |
+
markdown = """
|
7 |
+
## Real-time wildfire burn mapping
|
8 |
+
|
9 |
+
### About the project
|
10 |
+
|
11 |
+
**A proof of concept illustrating wildfire burn severity maps with emerging clarity while the fires progress.
|
12 |
+
Target users are forecasters and emergency managers responding to post-fire risks including debris flows and landslides.**
|
13 |
+
|
14 |
+
More project description, etc, etc.
|
15 |
+
|
16 |
+
**Case Studies from 2020 and 2021 Western US wildfire seasons **
|
17 |
+
|
18 |
+
- August Complex, CA (2020)
|
19 |
+
- Cameron Peak, CO (2020)
|
20 |
+
- Dixie Fire, CA (2021)
|
21 |
+
- North Complex, CA (2020)
|
22 |
+
|
23 |
+
|
24 |
+
**Current 2024 wildfires over 10,000 acres **
|
25 |
+
|
26 |
+
### How to use the app
|
27 |
+
|
28 |
+
1. Select the fire from the drop-down menu
|
29 |
+
|
30 |
+
2. Export image to Google Drive as a geotiff
|
31 |
+
|
32 |
+
3.
|
33 |
+
|
34 |
+
### Support
|
35 |
+
|
36 |
+
Initial funding for wildland burn scar mapping came through the NOAA JPSS/RRPG Fire and Smoke Initiative.
|
37 |
+
This supported the initial tests of BRIDGE maps using dNDVI. Subsequent funding supported the development of dNBR mapping and an effort
|
38 |
+
to tie support the near real-time distribution of incident-based fire detection and related satellite imagery products through the Next Generation Fire System (NGFS).
|
39 |
+
Current funding from the NOAA Weather Program Office (WPO) is supporting the refinement of our Google Earth Engine App (GEE)
|
40 |
+
and integration of GEE burn scar output with AWIPS (see example above) for Weather Forecast Offices, Regional Offices, and the Weather Prediction Center.
|
41 |
+
|
42 |
+
"""
|
43 |
+
|
44 |
+
solara.Markdown(markdown)
|
pages/__init__.py
ADDED
File without changes
|
pages/__pycache__/NBR_calculations.cpython-312.pyc
ADDED
Binary file (6.87 kB). View file
|
|
pages/current_fires.py
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ee
|
2 |
+
import geemap
|
3 |
+
import solara
|
4 |
+
import ipywidgets as widgets
|
5 |
+
import datetime
|
6 |
+
|
7 |
+
#from NBR_calculations import GcalcNBR, VcalcNBR, LcalcNBR, ScalcNBR, GcalcCCsingle
|
8 |
+
import requests
|
9 |
+
|
10 |
+
# Bit-masking
|
11 |
+
BitMask_0 = 1 << 0
|
12 |
+
BitMask_1 = 1 << 1
|
13 |
+
BitMask_2 = 1 << 2
|
14 |
+
BitMask_3 = 1 << 3
|
15 |
+
BitMask_4 = 1 << 4
|
16 |
+
BitMask_5 = 1 << 5
|
17 |
+
BitMask_6 = 1 << 6
|
18 |
+
BitMask_7 = 1 << 7
|
19 |
+
BitMask_8 = 1 << 8
|
20 |
+
BitMask_9 = 1 << 9
|
21 |
+
|
22 |
+
def GcalcCCsingle (goesImg):
|
23 |
+
|
24 |
+
fireDQF = goesImg.select('DQF').int()
|
25 |
+
CMI_QF3 = goesImg.select('DQF_C03').int()
|
26 |
+
CMI_QF6 = goesImg.select('DQF_C06').int()
|
27 |
+
|
28 |
+
#Right now, cloud mask is excluding clouds and water; active fire, bad data and fire free are unmasked. NBR mask exlcudes fire
|
29 |
+
F_Mask = fireDQF.eq(0)
|
30 |
+
C_Mask = (fireDQF.lt(2).Or(fireDQF.gt(2))).rename('C_Mask')
|
31 |
+
#.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('C_Mask')
|
32 |
+
QF_Mask = (fireDQF.eq(1).Or(fireDQF.gt(3)))\
|
33 |
+
.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('QFmask')
|
34 |
+
|
35 |
+
GOESmasked = goesImg.select(['CMI_C03','CMI_C06']).updateMask(QF_Mask)
|
36 |
+
NBRmasked = GOESmasked.normalizedDifference(['CMI_C03', 'CMI_C06']).toFloat().rename('NBR')
|
37 |
+
cloudMasked = goesImg.select('CMI_C03').updateMask(C_Mask).toFloat().rename('CC')
|
38 |
+
fireMasked = goesImg.select('CMI_C03').updateMask(F_Mask).toFloat().rename('FC')
|
39 |
+
|
40 |
+
return goesImg.addBands([NBRmasked,cloudMasked, fireMasked,QF_Mask,C_Mask])
|
41 |
+
|
42 |
+
'''Parameter Array Name Value Bit(s) = Value
|
43 |
+
Sun Glint QF1 Surface Reflectance None 6-7 = 00
|
44 |
+
Low Sun Mask QF1 Surface Reflectance High 5 = 0
|
45 |
+
Day/Night QF1 Surface Reflectance Day 4 =0
|
46 |
+
Cloud Detection QF1 Surface Reflectance Confident Clear 2-3 = 00 or Problably Clear 2-3 = 01
|
47 |
+
Cloud Mask Quality QF1 Surface Reflectance High or Medium 0-1 = 10 or 11
|
48 |
+
Snow/Ice QF2 Surface Reflectance No Snow or Ice 5 = 0
|
49 |
+
Cloud Shadow QF2 Surface Reflectance No Cloud Shadow 3 = 0
|
50 |
+
LandWater QF2 Surface Reflectance Land, Snow, Arctic, Antarctic or Greenland, Desert 0-2 = 011, 100, 101, 110, 111
|
51 |
+
Thin Cirrus Flag QF7 Surface Reflectance No Thin Cirrus 4 = 0
|
52 |
+
Aerosol Quantity QF7 Surface Reflectance Climatology, Low or Medium 2-3 = 00, 01 or 10
|
53 |
+
Adjacent to Cloud QF7 Surface Reflectance Not Adjacent to Cloud 1 = 0'''
|
54 |
+
|
55 |
+
def VcalcNBR (VIIRSimg):
|
56 |
+
|
57 |
+
QF1 = VIIRSimg.select('QF1').int()
|
58 |
+
QF2 = VIIRSimg.select('QF2').int()
|
59 |
+
QF7 = VIIRSimg.select('QF7').int()
|
60 |
+
|
61 |
+
QF_Mask = (QF1.bitwiseAnd(BitMask_3).eq(0)).And\
|
62 |
+
((QF2.bitwiseAnd(BitMask_2).eq(4)).Or((QF2.bitwiseAnd(BitMask_1).eq(0)))).And\
|
63 |
+
(QF2.bitwiseAnd(BitMask_5).eq(0)).rename('QFmask');
|
64 |
+
|
65 |
+
VIIRSm = VIIRSimg.select(['I2','M11']).updateMask(QF_Mask);
|
66 |
+
NBR = VIIRSm.normalizedDifference(['I2','M11']).toFloat().rename('NBR')
|
67 |
+
return VIIRSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR)
|
68 |
+
|
69 |
+
''' Bit 1: Dilated Cloud
|
70 |
+
Bit 2: Cirrus (high confidence)
|
71 |
+
Bit 3: Cloud
|
72 |
+
Bit 4: Cloud Shadow
|
73 |
+
Bit 5: Snow
|
74 |
+
Bit 6: Clear (0: Cloud or Dilated Cloud bits are set, 1: Cloud and Dilated Cloud bits are not set)
|
75 |
+
Bit 7: Water
|
76 |
+
Bits 8-9: Cloud Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
77 |
+
Bits 10-11: Cloud Shadow Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
78 |
+
Bits 12-13: Snow/Ice Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
79 |
+
Bits 14-15: Cirrus Confidence (0: None, 1: Low, 2: Medium, 3: High)'''
|
80 |
+
|
81 |
+
def LcalcNBR (LSimg):
|
82 |
+
QApixel = LSimg.select('QA_PIXEL').int()
|
83 |
+
QF_Mask =(QApixel.bitwiseAnd(BitMask_3).eq(0)).And\
|
84 |
+
(QApixel.bitwiseAnd(BitMask_5).eq(0)).And\
|
85 |
+
(QApixel.bitwiseAnd(BitMask_7).eq(0)).rename('QFmask');
|
86 |
+
|
87 |
+
LSmasked = LSimg.select(['SR_B5','SR_B7']).updateMask(QF_Mask);
|
88 |
+
NBR = LSmasked.normalizedDifference(['SR_B5','SR_B7']).toFloat().rename('NBR')
|
89 |
+
return LSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR)
|
90 |
+
|
91 |
+
''' 1 Saturated or defective
|
92 |
+
2 Dark Area Pixels
|
93 |
+
3 Cloud Shadows
|
94 |
+
4 Vegetation
|
95 |
+
5 Bare Soils
|
96 |
+
6 Water
|
97 |
+
7 Clouds Low Probability / Unclassified
|
98 |
+
8 Clouds Medium Probability
|
99 |
+
9 Clouds High Probability
|
100 |
+
10 Cirrus
|
101 |
+
11 Snow / Ice'''
|
102 |
+
|
103 |
+
def ScalcNBR (sentImg):
|
104 |
+
SCL = sentImg.select('SCL');
|
105 |
+
QF_Mask =(SCL.neq(6)).And\
|
106 |
+
(SCL.neq(8)).And\
|
107 |
+
(SCL.neq(9)).And\
|
108 |
+
(SCL.neq(11))\
|
109 |
+
.rename('QFmask');
|
110 |
+
sentMasked = sentImg.select(['B8A','B12']).updateMask(QF_Mask); #B8 is another option- broadband NIR
|
111 |
+
NBR = sentMasked.normalizedDifference(['B8A','B12']).toFloat().rename('NBR')
|
112 |
+
return sentImg.addBands(NBR).addBands(QF_Mask).addBands(SCL)#.set('avgNBR', avgNBR)
|
113 |
+
|
114 |
+
#createDates = NIFC_perims_716.aggregate_array('attr_Cre_1')
|
115 |
+
#incidentIDs = NIFC_perims_716.aggregate_array('poly_Incid')
|
116 |
+
#fireList = incidentIDs.getInfo()
|
117 |
+
fireList = wildfire_names = [ "FRESNO JUNE LIGHTNING COMPLEX", "Larch Creek","Deadman","Cow Valley","0404 RV LONE ROCK",
|
118 |
+
"PIONEER","South Fork", "Deer Springs","Basin","Lake","Horse Gulch","Falls","Silver King","Indios"]
|
119 |
+
selected_fire = solara.reactive(fireList[6])
|
120 |
+
dNBRvisParams = {'min': 0.0,'max': 0.8, 'palette': ['green', 'yellow','orange','red']}
|
121 |
+
today = datetime.datetime.today().strftime('%Y-%m-%d')
|
122 |
+
|
123 |
+
class Map(geemap.Map):
|
124 |
+
def __init__(self, **kwargs):
|
125 |
+
super().__init__(**kwargs)
|
126 |
+
self.add_basemap('OpenStreetMap')
|
127 |
+
|
128 |
+
self.customize_ee_data(selected_fire.value, today)
|
129 |
+
self.add_selector()
|
130 |
+
self.add_dwnldButton()
|
131 |
+
self.add("layer_manager")
|
132 |
+
self.remove("draw_control")
|
133 |
+
|
134 |
+
|
135 |
+
def customize_ee_data(self, fireID, elapDays):
|
136 |
+
NIFC_perims_716 = ee.FeatureCollection('projects/ovcrge-ssec-burn-scar-map-c116/assets/NIFC_perimeters_7-16')
|
137 |
+
fire = NIFC_perims_716.filter(ee.Filter.eq('poly_Incid',fireID)).first()
|
138 |
+
timestamp = fire.get('attr_Cre_1')
|
139 |
+
geom = fire.geometry()
|
140 |
+
|
141 |
+
startDate = ee.Date(timestamp)#.format('YYYY-MM-dd')
|
142 |
+
endDate = ee.Date.parse('YYYY-MM-dd', str(today))
|
143 |
+
|
144 |
+
boundingBox = ee.Geometry(geom.buffer(5000).bounds())
|
145 |
+
|
146 |
+
elapDayNum = ee.Number(10)
|
147 |
+
elapDay_plusOne = elapDayNum.add(ee.Number(1))
|
148 |
+
|
149 |
+
def calc_nbr(pre_start, pre_stop, post_start, post_stop, bbox, goes):
|
150 |
+
|
151 |
+
def MergeBands (eachImage):
|
152 |
+
oneImage = ee.Image.cat(eachImage.get('CMI'), eachImage.get('FDC'))
|
153 |
+
return oneImage
|
154 |
+
displacementImg18 = ee.Image.load('projects/ee-losos/assets/G18-F-meter-offset_GEE')
|
155 |
+
y_dif = displacementImg18.select([1])
|
156 |
+
x_dif = displacementImg18.select([0]).multiply(-1)
|
157 |
+
displacement18 = ee.Image([x_dif, y_dif])
|
158 |
+
|
159 |
+
displacementImg16 = ee.Image.load('projects/ee-losos/assets/G16-F-meter-offset_GEE')
|
160 |
+
y_dif = displacementImg16.select([1])
|
161 |
+
x_dif = displacementImg16.select([0]).multiply(-1)
|
162 |
+
displacement16 = ee.Image([x_dif, y_dif]);
|
163 |
+
|
164 |
+
preCMIcol = ee.ImageCollection(f"NOAA/GOES/{goes}/MCMIPF").filter(ee.Filter.date(pre_start, pre_stop))\
|
165 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
166 |
+
preFDCcol = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(pre_start, pre_stop))\
|
167 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
168 |
+
postCMIcol = ee.ImageCollection(f"NOAA/GOES/{goes}/MCMIPF").filter(ee.Filter.date(post_start, post_stop))\
|
169 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
170 |
+
postFDCcol = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(post_start, post_stop))\
|
171 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
172 |
+
|
173 |
+
prejoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
174 |
+
primary = preCMIcol,
|
175 |
+
secondary = preFDCcol,
|
176 |
+
condition = ee.Filter.maxDifference(
|
177 |
+
difference = 10, #milliseconds
|
178 |
+
leftField = 'system:time_start',
|
179 |
+
rightField = 'system:time_start',))
|
180 |
+
preMiddayGOEScol = ee.ImageCollection(prejoinedGOES.map(lambda object: MergeBands(object)))
|
181 |
+
preMiddayGOEScol = preMiddayGOEScol.map(GcalcCCsingle)
|
182 |
+
pre_meanNBR = preMiddayGOEScol.select(['NBR']).mean()
|
183 |
+
pre_meanNBR = pre_meanNBR.multiply(1.18).subtract(0.12)
|
184 |
+
|
185 |
+
postjoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
186 |
+
primary = postCMIcol,
|
187 |
+
secondary = postFDCcol,
|
188 |
+
condition = ee.Filter.maxDifference(
|
189 |
+
difference = 10, #milliseconds
|
190 |
+
leftField = 'system:time_start',
|
191 |
+
rightField = 'system:time_start',))
|
192 |
+
postMiddayGOEScol = ee.ImageCollection(postjoinedGOES.map(lambda object: MergeBands(object)))
|
193 |
+
postMiddayGOEScol = postMiddayGOEScol.map(GcalcCCsingle)
|
194 |
+
post_meanNBR = postMiddayGOEScol.select(['NBR']).mean()
|
195 |
+
post_meanNBR = post_meanNBR.multiply(1.18).subtract(0.12)
|
196 |
+
|
197 |
+
dNBR_goes17 = pre_meanNBR.subtract(post_meanNBR).select('NBR')
|
198 |
+
|
199 |
+
|
200 |
+
#GOES-16
|
201 |
+
preCMIcol = ee.ImageCollection("NOAA/GOES/16/MCMIPF").filter(ee.Filter.date(pre_start, pre_stop))\
|
202 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
203 |
+
preFDCcol = ee.ImageCollection("NOAA/GOES/16/FDCF").filter(ee.Filter.date(pre_start, pre_stop))\
|
204 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
205 |
+
|
206 |
+
prejoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
207 |
+
primary = preCMIcol,
|
208 |
+
secondary = preFDCcol,
|
209 |
+
condition = ee.Filter.maxDifference(
|
210 |
+
difference = 10, #milliseconds
|
211 |
+
leftField = 'system:time_start',
|
212 |
+
rightField = 'system:time_start',))
|
213 |
+
preMiddayGOEScol = ee.ImageCollection(prejoinedGOES.map(lambda object: MergeBands(object)))
|
214 |
+
preMiddayGOEScol = preMiddayGOEScol.map(GcalcCCsingle)
|
215 |
+
pre_meanNBR = preMiddayGOEScol.select(['NBR']).mean()
|
216 |
+
pre_meanNBR = pre_meanNBR.multiply(1.18).subtract(0.12)
|
217 |
+
|
218 |
+
|
219 |
+
postCMIcol = ee.ImageCollection("NOAA/GOES/16/MCMIPF").filter(ee.Filter.date(post_start, post_stop))\
|
220 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
221 |
+
postFDCcol = ee.ImageCollection("NOAA/GOES/16/FDCF").filter(ee.Filter.date(post_start, post_stop))\
|
222 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
223 |
+
|
224 |
+
postjoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
225 |
+
primary = postCMIcol,
|
226 |
+
secondary = postFDCcol,
|
227 |
+
condition = ee.Filter.maxDifference(
|
228 |
+
difference = 10, #milliseconds
|
229 |
+
leftField = 'system:time_start',
|
230 |
+
rightField = 'system:time_start',))
|
231 |
+
postMiddayGOEScol = ee.ImageCollection(postjoinedGOES.map(lambda object: MergeBands(object)))
|
232 |
+
postMiddayGOEScol = postMiddayGOEScol.map(GcalcCCsingle)
|
233 |
+
post_meanNBR = postMiddayGOEScol.select(['NBR']).mean()
|
234 |
+
post_meanNBR = post_meanNBR.multiply(1.18).subtract(0.12)
|
235 |
+
|
236 |
+
dNBR_goes16 = pre_meanNBR.subtract(post_meanNBR).select('NBR')
|
237 |
+
|
238 |
+
dNBRclip_goes17= dNBR_goes17.clip(bbox)
|
239 |
+
dNBRclip_goes16= dNBR_goes16.clip(bbox)
|
240 |
+
dNBRdisp_goes17 = dNBRclip_goes17.displace(displacement18, 'bicubic')
|
241 |
+
dNBRdisp_goes16 = dNBRclip_goes16.displace(displacement16, 'bicubic')
|
242 |
+
dNBRgoes_compos = ee.ImageCollection([dNBRdisp_goes17,dNBRdisp_goes16]).mean()
|
243 |
+
|
244 |
+
#ACTIVE fire
|
245 |
+
activeFire18 = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(pre_stop, post_stop))
|
246 |
+
activeFire16 = ee.ImageCollection(f"NOAA/GOES/16/FDCF").filter(ee.Filter.date(pre_stop, post_stop))
|
247 |
+
sumFRP18 = activeFire18.select('Power').sum().rename('sumFRP')
|
248 |
+
sumFRP16 = activeFire16.select('Power').sum().rename('sumFRP')
|
249 |
+
maskNoFire18 = sumFRP18.gt(200).displace(displacement18, 'bicubic')
|
250 |
+
maskNoFire16 = sumFRP16.gt(200).displace(displacement16, 'bicubic')
|
251 |
+
maskNoFire = ee.ImageCollection([maskNoFire18,maskNoFire16]).sum().gt(0)
|
252 |
+
|
253 |
+
'''
|
254 |
+
activeSNPP = ee.ImageCollection("NASA/LANCE/SNPP_VIIRS/C2").filter(ee.Filter.date(pre_stop, post_stop))
|
255 |
+
activeNOAA20 = ee.ImageCollection("NASA/LANCE/NOAA20_VIIRS/C2").filter(ee.Filter.date(pre_stop, post_stop))
|
256 |
+
sumFRP_SNPP = activeSNPP.select('confidence').max().rename('sumFRP')
|
257 |
+
sumFRP_NOAA20 = activeNOAA20.select('confidence').max().rename('sumFRP')
|
258 |
+
#maskNoFire = ee.ImageCollection([sumFRP_SNPP,sumFRP_NOAA20]).sum().gt(0)
|
259 |
+
maskNoFire = sumFRP_SNPP.gt(0)
|
260 |
+
'''
|
261 |
+
|
262 |
+
#VIIRS
|
263 |
+
preVIIRSimg = ee.ImageCollection("NASA/VIIRS/002/VNP09GA").filter(ee.Filter.date(pre_start, pre_stop)).mean()
|
264 |
+
postVIIRSimgCol = ee.ImageCollection("NASA/VIIRS/002/VNP09GA").filter(ee.Filter.date(post_start, post_stop)) #TO FIX ON JUNE 18 sfork_startDate.advance(24, 'day'), sfork_startDate.advance(25,'day')
|
265 |
+
|
266 |
+
#Landsat
|
267 |
+
prelandsat8col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox)
|
268 |
+
postlandsat8col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").filterDate(post_start, post_stop).filterBounds(bbox)
|
269 |
+
prelandsat9col = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox)
|
270 |
+
postlandsat9col = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2").filterDate(post_start, post_stop).filterBounds(bbox)
|
271 |
+
prelandsatcol = prelandsat8col.merge(prelandsat9col)
|
272 |
+
postlandsatcol = postlandsat8col.merge(postlandsat9col)
|
273 |
+
|
274 |
+
#Sentinel
|
275 |
+
presentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox)
|
276 |
+
postsentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(post_start, post_stop).filterBounds(bbox) #TO FIX on JULY 5: sfork_startDate.advance(32, 'day'), sfork_startDate.advance(33,'day')
|
277 |
+
#olderPostSentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(sfork_startDate.advance(37, 'day'), sfork_startDate.advance(38,'day')).filterBounds(bbox)
|
278 |
+
|
279 |
+
#SAR
|
280 |
+
#SARimg = ee.Image('projects/ovcrge-ssec-burn-scar-map-c116/assets/burned_20200907_20200919_test')
|
281 |
+
#SARmask = SARimg.eq(1)
|
282 |
+
|
283 |
+
if postVIIRSimgCol.size().getInfo() > 0:
|
284 |
+
postVIIRSimg = postVIIRSimgCol.mean()
|
285 |
+
preVIIRSimg = VcalcNBR(preVIIRSimg)
|
286 |
+
postVIIRSimg = VcalcNBR(postVIIRSimg)
|
287 |
+
dNBR_viirs = preVIIRSimg.subtract(postVIIRSimg).select('NBR')
|
288 |
+
dNBRclip_viirs = dNBR_viirs.clip(bbox)
|
289 |
+
else:
|
290 |
+
dNBR_composite = dNBRgoes_compos
|
291 |
+
if postsentCol.size().getInfo() > 0:
|
292 |
+
presentMean = presentCol.mean()
|
293 |
+
postsentMean = postsentCol.mean()
|
294 |
+
presentImg = ScalcNBR(presentMean)
|
295 |
+
postsentImg = ScalcNBR(postsentMean)
|
296 |
+
dnbr_sent = presentImg.subtract(postsentImg).multiply(1.3).add(0.05).select('NBR')
|
297 |
+
dNBRclip_sent = dnbr_sent.clip(bbox)
|
298 |
+
dNBR_composite = ee.ImageCollection([dNBRgoes_compos,dNBRclip_sent]).mosaic() #dNBRclip_viirs SHOULD GO IN IF UP TO DATE
|
299 |
+
elif postlandsatcol.size().getInfo() > 0:
|
300 |
+
prelandsat = prelandsatcol.mean()
|
301 |
+
prelandsatImg = LcalcNBR(prelandsat)
|
302 |
+
postlandsat = postlandsatcol.mean()
|
303 |
+
postlandsatImg = LcalcNBR(postlandsat)
|
304 |
+
dNBR_landsat = prelandsatImg.subtract(postlandsatImg).multiply(3.23).add(0.01).select('NBR')
|
305 |
+
dNBRclip_ls = dNBR_landsat.clip(bbox)
|
306 |
+
dNBR_composite = ee.ImageCollection([dNBRgoes_compos,dNBRclip_ls]).mosaic() #dNBRclip_viirs SHOULD GO IN IF UP TO DATE
|
307 |
+
else:
|
308 |
+
dNBR_composite = ee.ImageCollection([dNBRgoes_compos]).mosaic() #dNBRclip_viirs SHOULD GO IN IF UP TO DATE
|
309 |
+
|
310 |
+
masked_compos = dNBR_composite.updateMask(maskNoFire) #(SARmask)
|
311 |
+
#doubleMasked_compos = masked_compos.updateMask(maskNoFire)
|
312 |
+
doubleMasked_compos = masked_compos.mask(masked_compos.mask()).float()
|
313 |
+
downloadArgs = {'name': 'VIIRS_burnMap',
|
314 |
+
'crs': 'EPSG:4326',
|
315 |
+
'scale': 60,
|
316 |
+
'region': bbox}
|
317 |
+
url = doubleMasked_compos.getDownloadURL(downloadArgs)
|
318 |
+
|
319 |
+
print(url)
|
320 |
+
noDataVal = -9999
|
321 |
+
unmaskedImage = doubleMasked_compos.unmask(noDataVal, False)
|
322 |
+
|
323 |
+
task = ee.batch.Export.image.toDrive(**{
|
324 |
+
'image': unmaskedImage,
|
325 |
+
'description': "Composite_burnMap6",
|
326 |
+
'folder': "Earth Engine Outputs",
|
327 |
+
'fileNamePrefix': "Composite_burnMap_noData_VIIRS_June18_espg3857_60m",
|
328 |
+
'region': bbox,
|
329 |
+
'crs': 'EPSG:3857',
|
330 |
+
'scale': 60,})
|
331 |
+
task.start()
|
332 |
+
return masked_compos
|
333 |
+
|
334 |
+
|
335 |
+
self.clear_specific_layers()
|
336 |
+
|
337 |
+
fireImg = calc_nbr(startDate.advance(-7, 'day'), startDate, endDate.advance(-3, 'day'), endDate, boundingBox, 18)
|
338 |
+
self.addLayer(fireImg, dNBRvisParams, fireID, True)
|
339 |
+
self.centerObject(boundingBox, 10)
|
340 |
+
file = fireImg
|
341 |
+
|
342 |
+
|
343 |
+
def clear_specific_layers(self):
|
344 |
+
layers_to_keep = ['OpenStreetMap']
|
345 |
+
layers = list(self.layers)
|
346 |
+
for layer in layers:
|
347 |
+
if layer.name not in layers_to_keep:
|
348 |
+
self.remove_layer(layer)
|
349 |
+
|
350 |
+
|
351 |
+
def add_selector(self):
|
352 |
+
selector = widgets.Dropdown(options=fireList, value=fireList[6], description='Current wildfire :', style={'description_width': '125px'}, layout=widgets.Layout(width='400px'))
|
353 |
+
|
354 |
+
def on_selector_change(change):
|
355 |
+
if change['name'] == 'value':
|
356 |
+
selected_fire.value = change['new']
|
357 |
+
self.customize_ee_data(selected_fire.value, today)
|
358 |
+
|
359 |
+
selector.observe(on_selector_change, names='value')
|
360 |
+
self.add_widget(selector, position="topleft")
|
361 |
+
|
362 |
+
|
363 |
+
def add_dwnldButton(self):
|
364 |
+
button = widgets.Button(description='Export to Drive',icon='cloud-arrow-down')
|
365 |
+
|
366 |
+
#def on_button_click(change, file):
|
367 |
+
# if change['name'] == 'value':
|
368 |
+
# selected_days.value = change['new']
|
369 |
+
# self.download_ee_image(file, "trial_file.tif", scale=30)
|
370 |
+
def on_button_click(b):
|
371 |
+
# Get the currently selected fire and elapsed days
|
372 |
+
fire = selected_fire.value
|
373 |
+
elapDays = today
|
374 |
+
|
375 |
+
# Customize the EE data and download the image
|
376 |
+
file = self.customize_ee_data(fire, elapDays)
|
377 |
+
#self.download_ee_image(file, f"{fire}_NBR_{elapDays}days.tif", scale=30)
|
378 |
+
|
379 |
+
button.observe(on_button_click)
|
380 |
+
self.add_widget(button, position="topleft")
|
381 |
+
|
382 |
+
|
383 |
+
|
384 |
+
@solara.component
|
385 |
+
def Page():
|
386 |
+
|
387 |
+
with solara.Column(align="center"):
|
388 |
+
markdown = """
|
389 |
+
## Current 2024 wildfires over 10,000 acres"""
|
390 |
+
solara.Markdown(markdown)
|
391 |
+
|
392 |
+
# Isolation is required to prevent the map from overlapping navigation (when screen width < 960px)
|
393 |
+
with solara.Column(style={"isolation": "isolate"}):
|
394 |
+
map_widget = Map.element(
|
395 |
+
center=[39, -120.5],
|
396 |
+
zoom=8,
|
397 |
+
height="600px",
|
398 |
+
toolbar_ctrl=False
|
399 |
+
)
|
pages/historical_fires.py
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ee
|
2 |
+
import geemap
|
3 |
+
import solara
|
4 |
+
import ipywidgets as widgets
|
5 |
+
#from NBR_calculations import GcalcNBR, VcalcNBR, LcalcNBR, ScalcNBR, GcalcCCsingle
|
6 |
+
import requests
|
7 |
+
|
8 |
+
# Bit-masking
|
9 |
+
BitMask_0 = 1 << 0
|
10 |
+
BitMask_1 = 1 << 1
|
11 |
+
BitMask_2 = 1 << 2
|
12 |
+
BitMask_3 = 1 << 3
|
13 |
+
BitMask_4 = 1 << 4
|
14 |
+
BitMask_5 = 1 << 5
|
15 |
+
BitMask_6 = 1 << 6
|
16 |
+
BitMask_7 = 1 << 7
|
17 |
+
BitMask_8 = 1 << 8
|
18 |
+
BitMask_9 = 1 << 9
|
19 |
+
|
20 |
+
def GcalcCCsingle (goesImg):
|
21 |
+
|
22 |
+
fireDQF = goesImg.select('DQF').int()
|
23 |
+
CMI_QF3 = goesImg.select('DQF_C03').int()
|
24 |
+
CMI_QF6 = goesImg.select('DQF_C06').int()
|
25 |
+
|
26 |
+
#Right now, cloud mask is excluding clouds and water; active fire, bad data and fire free are unmasked. NBR mask exlcudes fire
|
27 |
+
F_Mask = fireDQF.eq(0)
|
28 |
+
C_Mask = (fireDQF.lt(2).Or(fireDQF.gt(2))).rename('C_Mask')
|
29 |
+
#.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('C_Mask')
|
30 |
+
QF_Mask = (fireDQF.eq(1).Or(fireDQF.gt(3)))\
|
31 |
+
.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('QFmask')
|
32 |
+
|
33 |
+
GOESmasked = goesImg.select(['CMI_C03','CMI_C06']).updateMask(QF_Mask)
|
34 |
+
NBRmasked = GOESmasked.normalizedDifference(['CMI_C03', 'CMI_C06']).toFloat().rename('NBR')
|
35 |
+
cloudMasked = goesImg.select('CMI_C03').updateMask(C_Mask).toFloat().rename('CC')
|
36 |
+
fireMasked = goesImg.select('CMI_C03').updateMask(F_Mask).toFloat().rename('FC')
|
37 |
+
|
38 |
+
return goesImg.addBands([NBRmasked,cloudMasked, fireMasked,QF_Mask,C_Mask])
|
39 |
+
|
40 |
+
'''Parameter Array Name Value Bit(s) = Value
|
41 |
+
Sun Glint QF1 Surface Reflectance None 6-7 = 00
|
42 |
+
Low Sun Mask QF1 Surface Reflectance High 5 = 0
|
43 |
+
Day/Night QF1 Surface Reflectance Day 4 =0
|
44 |
+
Cloud Detection QF1 Surface Reflectance Confident Clear 2-3 = 00 or Problably Clear 2-3 = 01
|
45 |
+
Cloud Mask Quality QF1 Surface Reflectance High or Medium 0-1 = 10 or 11
|
46 |
+
Snow/Ice QF2 Surface Reflectance No Snow or Ice 5 = 0
|
47 |
+
Cloud Shadow QF2 Surface Reflectance No Cloud Shadow 3 = 0
|
48 |
+
LandWater QF2 Surface Reflectance Land, Snow, Arctic, Antarctic or Greenland, Desert 0-2 = 011, 100, 101, 110, 111
|
49 |
+
Thin Cirrus Flag QF7 Surface Reflectance No Thin Cirrus 4 = 0
|
50 |
+
Aerosol Quantity QF7 Surface Reflectance Climatology, Low or Medium 2-3 = 00, 01 or 10
|
51 |
+
Adjacent to Cloud QF7 Surface Reflectance Not Adjacent to Cloud 1 = 0'''
|
52 |
+
|
53 |
+
def VcalcNBR (VIIRSimg):
|
54 |
+
|
55 |
+
QF1 = VIIRSimg.select('QF1').int()
|
56 |
+
QF2 = VIIRSimg.select('QF2').int()
|
57 |
+
QF7 = VIIRSimg.select('QF7').int()
|
58 |
+
|
59 |
+
QF_Mask = (QF1.bitwiseAnd(BitMask_3).eq(0)).And\
|
60 |
+
((QF2.bitwiseAnd(BitMask_2).eq(4)).Or((QF2.bitwiseAnd(BitMask_1).eq(0)))).And\
|
61 |
+
(QF2.bitwiseAnd(BitMask_5).eq(0)).rename('QFmask');
|
62 |
+
|
63 |
+
VIIRSm = VIIRSimg.select(['I2','M11']).updateMask(QF_Mask);
|
64 |
+
NBR = VIIRSm.normalizedDifference(['I2','M11']).toFloat().rename('NBR')
|
65 |
+
return VIIRSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR)
|
66 |
+
|
67 |
+
''' Bit 1: Dilated Cloud
|
68 |
+
Bit 2: Cirrus (high confidence)
|
69 |
+
Bit 3: Cloud
|
70 |
+
Bit 4: Cloud Shadow
|
71 |
+
Bit 5: Snow
|
72 |
+
Bit 6: Clear (0: Cloud or Dilated Cloud bits are set, 1: Cloud and Dilated Cloud bits are not set)
|
73 |
+
Bit 7: Water
|
74 |
+
Bits 8-9: Cloud Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
75 |
+
Bits 10-11: Cloud Shadow Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
76 |
+
Bits 12-13: Snow/Ice Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
77 |
+
Bits 14-15: Cirrus Confidence (0: None, 1: Low, 2: Medium, 3: High)'''
|
78 |
+
|
79 |
+
def LcalcNBR (LSimg):
|
80 |
+
QApixel = LSimg.select('QA_PIXEL').int()
|
81 |
+
QF_Mask =(QApixel.bitwiseAnd(BitMask_3).eq(0)).And\
|
82 |
+
(QApixel.bitwiseAnd(BitMask_5).eq(0)).And\
|
83 |
+
(QApixel.bitwiseAnd(BitMask_7).eq(0)).rename('QFmask');
|
84 |
+
|
85 |
+
LSmasked = LSimg.select(['SR_B5','SR_B7']).updateMask(QF_Mask);
|
86 |
+
NBR = LSmasked.normalizedDifference(['SR_B5','SR_B7']).toFloat().rename('NBR')
|
87 |
+
return LSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR)
|
88 |
+
|
89 |
+
''' 1 Saturated or defective
|
90 |
+
2 Dark Area Pixels
|
91 |
+
3 Cloud Shadows
|
92 |
+
4 Vegetation
|
93 |
+
5 Bare Soils
|
94 |
+
6 Water
|
95 |
+
7 Clouds Low Probability / Unclassified
|
96 |
+
8 Clouds Medium Probability
|
97 |
+
9 Clouds High Probability
|
98 |
+
10 Cirrus
|
99 |
+
11 Snow / Ice'''
|
100 |
+
|
101 |
+
def ScalcNBR (sentImg):
|
102 |
+
SCL = sentImg.select('SCL');
|
103 |
+
QF_Mask =(SCL.neq(6)).And\
|
104 |
+
(SCL.neq(8)).And\
|
105 |
+
(SCL.neq(9)).And\
|
106 |
+
(SCL.neq(11))\
|
107 |
+
.rename('QFmask');
|
108 |
+
sentMasked = sentImg.select(['B8A','B12']).updateMask(QF_Mask); #B8 is another option- broadband NIR
|
109 |
+
NBR = sentMasked.normalizedDifference(['B8A','B12']).toFloat().rename('NBR')
|
110 |
+
return sentImg.addBands(NBR).addBands(QF_Mask).addBands(SCL)#.set('avgNBR', avgNBR)
|
111 |
+
|
112 |
+
|
113 |
+
fireList = ["North Complex", "Dixie", "Cameron Peak", "August Complex", "South Fork"]
|
114 |
+
selected_fire = solara.reactive(fireList[4])
|
115 |
+
selected_days = solara.reactive(25) #30
|
116 |
+
dNBRvisParams = {'min': 0.0,'max': 0.8, 'palette': ['green', 'yellow','orange','red']}
|
117 |
+
|
118 |
+
|
119 |
+
class Map(geemap.Map):
|
120 |
+
def __init__(self, **kwargs):
|
121 |
+
super().__init__(**kwargs)
|
122 |
+
self.add_basemap('OpenStreetMap')
|
123 |
+
self.customize_ee_data(selected_fire.value, selected_days.value)
|
124 |
+
self.add_selector()
|
125 |
+
self.add_intSlider()
|
126 |
+
self.add_dwnldButton()
|
127 |
+
self.add("layer_manager")
|
128 |
+
self.remove("draw_control")
|
129 |
+
|
130 |
+
|
131 |
+
def customize_ee_data(self, fire, elapDays):
|
132 |
+
elapDayNum = ee.Number(elapDays)
|
133 |
+
elapDay_plusOne = elapDayNum.add(ee.Number(1))
|
134 |
+
|
135 |
+
north_startDate = ee.Date('2020-08-16')
|
136 |
+
dixie_startDate = ee.Date('2021-07-13')
|
137 |
+
cam_startDate = ee.Date('2020-08-13')
|
138 |
+
aug_startDate = ee.Date('2020-08-15')
|
139 |
+
sfork_startDate = ee.Date('2024-05-25')
|
140 |
+
|
141 |
+
north_complex_bb = ee.Geometry.BBox(-121.616097, 39.426723, -120.668526, 40.030845)
|
142 |
+
dixie_bb = ee.Geometry.BBox(-121.680467, 39.759303, -120.065477, 40.873387)
|
143 |
+
cam_peak_bb = ee.Geometry.BBox(-106.014784, 40.377907, -105.116651, 40.822094)
|
144 |
+
aug_complex_bb = ee.Geometry.BBox(-123.668726, 39.337654, -122.355860, 40.498304)
|
145 |
+
sfork_bb = ee.Geometry.BBox(-106.192, 33.1, -105.065, 33.782)
|
146 |
+
|
147 |
+
def calc_nbr(pre_start, pre_stop, post_start, post_stop, bbox, goes):
|
148 |
+
def MergeBands (eachImage):
|
149 |
+
oneImage = ee.Image.cat(eachImage.get('CMI'), eachImage.get('FDC'))
|
150 |
+
return oneImage
|
151 |
+
displacementImg18 = ee.Image.load('projects/ee-losos/assets/G18-F-meter-offset_GEE')
|
152 |
+
y_dif = displacementImg18.select([1])
|
153 |
+
x_dif = displacementImg18.select([0]).multiply(-1)
|
154 |
+
displacement18 = ee.Image([x_dif, y_dif])
|
155 |
+
|
156 |
+
displacementImg16 = ee.Image.load('projects/ee-losos/assets/G16-F-meter-offset_GEE')
|
157 |
+
y_dif = displacementImg16.select([1])
|
158 |
+
x_dif = displacementImg16.select([0]).multiply(-1)
|
159 |
+
displacement16 = ee.Image([x_dif, y_dif]);
|
160 |
+
|
161 |
+
preCMIcol = ee.ImageCollection(f"NOAA/GOES/{goes}/MCMIPF").filter(ee.Filter.date(pre_start, pre_stop))\
|
162 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
163 |
+
preFDCcol = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(pre_start, pre_stop))\
|
164 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
165 |
+
postCMIcol = ee.ImageCollection(f"NOAA/GOES/{goes}/MCMIPF").filter(ee.Filter.date(post_start, post_stop))\
|
166 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
167 |
+
postFDCcol = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(post_start, post_stop))\
|
168 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
169 |
+
|
170 |
+
prejoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
171 |
+
primary = preCMIcol,
|
172 |
+
secondary = preFDCcol,
|
173 |
+
condition = ee.Filter.maxDifference(
|
174 |
+
difference = 10, #milliseconds
|
175 |
+
leftField = 'system:time_start',
|
176 |
+
rightField = 'system:time_start',))
|
177 |
+
preMiddayGOEScol = ee.ImageCollection(prejoinedGOES.map(lambda object: MergeBands(object)))
|
178 |
+
preMiddayGOEScol = preMiddayGOEScol.map(GcalcCCsingle)
|
179 |
+
pre_meanNBR = preMiddayGOEScol.select(['NBR']).mean()
|
180 |
+
pre_meanNBR = pre_meanNBR.multiply(1.18).subtract(0.12)
|
181 |
+
|
182 |
+
postjoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
183 |
+
primary = postCMIcol,
|
184 |
+
secondary = postFDCcol,
|
185 |
+
condition = ee.Filter.maxDifference(
|
186 |
+
difference = 10, #milliseconds
|
187 |
+
leftField = 'system:time_start',
|
188 |
+
rightField = 'system:time_start',))
|
189 |
+
postMiddayGOEScol = ee.ImageCollection(postjoinedGOES.map(lambda object: MergeBands(object)))
|
190 |
+
postMiddayGOEScol = postMiddayGOEScol.map(GcalcCCsingle)
|
191 |
+
post_meanNBR = postMiddayGOEScol.select(['NBR']).mean()
|
192 |
+
post_meanNBR = post_meanNBR.multiply(1.18).subtract(0.12)
|
193 |
+
|
194 |
+
dNBR_goes17 = pre_meanNBR.subtract(post_meanNBR).select('NBR')
|
195 |
+
|
196 |
+
|
197 |
+
#GOES-16
|
198 |
+
preCMIcol = ee.ImageCollection("NOAA/GOES/16/MCMIPF").filter(ee.Filter.date(pre_start, pre_stop))\
|
199 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
200 |
+
preFDCcol = ee.ImageCollection("NOAA/GOES/16/FDCF").filter(ee.Filter.date(pre_start, pre_stop))\
|
201 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
202 |
+
|
203 |
+
prejoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
204 |
+
primary = preCMIcol,
|
205 |
+
secondary = preFDCcol,
|
206 |
+
condition = ee.Filter.maxDifference(
|
207 |
+
difference = 10, #milliseconds
|
208 |
+
leftField = 'system:time_start',
|
209 |
+
rightField = 'system:time_start',))
|
210 |
+
preMiddayGOEScol = ee.ImageCollection(prejoinedGOES.map(lambda object: MergeBands(object)))
|
211 |
+
preMiddayGOEScol = preMiddayGOEScol.map(GcalcCCsingle)
|
212 |
+
pre_meanNBR = preMiddayGOEScol.select(['NBR']).mean()
|
213 |
+
pre_meanNBR = pre_meanNBR.multiply(1.18).subtract(0.12)
|
214 |
+
|
215 |
+
|
216 |
+
postCMIcol = ee.ImageCollection("NOAA/GOES/16/MCMIPF").filter(ee.Filter.date(post_start, post_stop))\
|
217 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
218 |
+
postFDCcol = ee.ImageCollection("NOAA/GOES/16/FDCF").filter(ee.Filter.date(post_start, post_stop))\
|
219 |
+
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
220 |
+
|
221 |
+
postjoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
222 |
+
primary = postCMIcol,
|
223 |
+
secondary = postFDCcol,
|
224 |
+
condition = ee.Filter.maxDifference(
|
225 |
+
difference = 10, #milliseconds
|
226 |
+
leftField = 'system:time_start',
|
227 |
+
rightField = 'system:time_start',))
|
228 |
+
postMiddayGOEScol = ee.ImageCollection(postjoinedGOES.map(lambda object: MergeBands(object)))
|
229 |
+
postMiddayGOEScol = postMiddayGOEScol.map(GcalcCCsingle)
|
230 |
+
post_meanNBR = postMiddayGOEScol.select(['NBR']).mean()
|
231 |
+
post_meanNBR = post_meanNBR.multiply(1.18).subtract(0.12)
|
232 |
+
|
233 |
+
dNBR_goes16 = pre_meanNBR.subtract(post_meanNBR).select('NBR')
|
234 |
+
|
235 |
+
dNBRclip_goes17= dNBR_goes17.clip(bbox)
|
236 |
+
dNBRclip_goes16= dNBR_goes16.clip(bbox)
|
237 |
+
dNBRdisp_goes17 = dNBRclip_goes17.displace(displacement18, 'bicubic')
|
238 |
+
dNBRdisp_goes16 = dNBRclip_goes16.displace(displacement16, 'bicubic')
|
239 |
+
dNBRgoes_compos = ee.ImageCollection([dNBRdisp_goes17,dNBRdisp_goes16]).mean()
|
240 |
+
|
241 |
+
#ACTIVE fire
|
242 |
+
activeFire18 = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(pre_stop, post_stop))
|
243 |
+
activeFire16 = ee.ImageCollection(f"NOAA/GOES/16/FDCF").filter(ee.Filter.date(pre_stop, post_stop))
|
244 |
+
sumFRP18 = activeFire18.select('Power').sum().rename('sumFRP')
|
245 |
+
sumFRP16 = activeFire16.select('Power').sum().rename('sumFRP')
|
246 |
+
maskNoFire18 = sumFRP18.gt(200).displace(displacement18, 'bicubic')
|
247 |
+
maskNoFire16 = sumFRP16.gt(200).displace(displacement16, 'bicubic')
|
248 |
+
maskNoFire = ee.ImageCollection([maskNoFire18,maskNoFire16]).sum().gt(0)
|
249 |
+
|
250 |
+
'''
|
251 |
+
activeSNPP = ee.ImageCollection("NASA/LANCE/SNPP_VIIRS/C2").filter(ee.Filter.date(pre_stop, post_stop))
|
252 |
+
activeNOAA20 = ee.ImageCollection("NASA/LANCE/NOAA20_VIIRS/C2").filter(ee.Filter.date(pre_stop, post_stop))
|
253 |
+
sumFRP_SNPP = activeSNPP.select('confidence').max().rename('sumFRP')
|
254 |
+
sumFRP_NOAA20 = activeNOAA20.select('confidence').max().rename('sumFRP')
|
255 |
+
#maskNoFire = ee.ImageCollection([sumFRP_SNPP,sumFRP_NOAA20]).sum().gt(0)
|
256 |
+
maskNoFire = sumFRP_SNPP.gt(0)
|
257 |
+
'''
|
258 |
+
|
259 |
+
#VIIRS
|
260 |
+
preVIIRSimg = ee.ImageCollection("NASA/VIIRS/002/VNP09GA").filter(ee.Filter.date(pre_start, pre_stop)).mean()
|
261 |
+
#postVIIRSimgCol = ee.ImageCollection("NASA/VIIRS/002/VNP09GA").filter(ee.Filter.date(post_start, post_stop))
|
262 |
+
postVIIRSimgCol = ee.ImageCollection("NASA/VIIRS/002/VNP09GA").filter(ee.Filter.date(post_start, post_stop)) #TO FIX ON JUNE 18 sfork_startDate.advance(24, 'day'), sfork_startDate.advance(25,'day')
|
263 |
+
|
264 |
+
#Landsat
|
265 |
+
prelandsat8col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox)
|
266 |
+
postlandsat8col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").filterDate(post_start, post_stop).filterBounds(bbox)
|
267 |
+
prelandsat9col = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox)
|
268 |
+
postlandsat9col = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2").filterDate(post_start, post_stop).filterBounds(bbox)
|
269 |
+
prelandsatcol = prelandsat8col.merge(prelandsat9col)
|
270 |
+
postlandsatcol = postlandsat8col.merge(postlandsat9col)
|
271 |
+
|
272 |
+
#Sentinel
|
273 |
+
presentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox)
|
274 |
+
postsentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(post_start, post_stop).filterBounds(bbox) #TO FIX on JULY 5: sfork_startDate.advance(32, 'day'), sfork_startDate.advance(33,'day')
|
275 |
+
olderPostSentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(sfork_startDate.advance(37, 'day'), sfork_startDate.advance(38,'day')).filterBounds(bbox)
|
276 |
+
#SAR
|
277 |
+
#SARimg = ee.Image('projects/ovcrge-ssec-burn-scar-map-c116/assets/burned_20200907_20200919_test')
|
278 |
+
#SARmask = SARimg.eq(1)
|
279 |
+
if postVIIRSimgCol.size().getInfo() > 0:
|
280 |
+
postVIIRSimg = postVIIRSimgCol.mean()
|
281 |
+
preVIIRSimg = VcalcNBR(preVIIRSimg)
|
282 |
+
postVIIRSimg = VcalcNBR(postVIIRSimg)
|
283 |
+
dNBR_viirs = preVIIRSimg.subtract(postVIIRSimg).select('NBR')
|
284 |
+
dNBRclip_viirs = dNBR_viirs.clip(bbox)
|
285 |
+
else:
|
286 |
+
dNBR_composite = dNBRgoes_compos
|
287 |
+
if postsentCol.size().getInfo() > 0:
|
288 |
+
presentMean = presentCol.mean()
|
289 |
+
postsentMean = postsentCol.mean()
|
290 |
+
postsent2Mean = olderPostSentCol.mean()
|
291 |
+
presentImg = ScalcNBR(presentMean)
|
292 |
+
postsentImg = ScalcNBR(postsentMean)
|
293 |
+
postsentImg2 = ScalcNBR(postsent2Mean)
|
294 |
+
postSentCombo = ee.ImageCollection([postsentImg,postsentImg2]).mosaic()
|
295 |
+
dnbr_sent = presentImg.subtract(postSentCombo).multiply(1.3).add(0.05).select('NBR')
|
296 |
+
dNBRclip_sent = dnbr_sent.clip(bbox)
|
297 |
+
dNBR_composite = ee.ImageCollection([dNBRgoes_compos,dNBRclip_viirs,dNBRclip_sent]).mosaic()
|
298 |
+
elif postlandsatcol.size().getInfo() > 0:
|
299 |
+
print(postlandsatcol.size().getInfo())
|
300 |
+
prelandsat = prelandsatcol.mean()
|
301 |
+
prelandsatImg = LcalcNBR(prelandsat)
|
302 |
+
postlandsat = postlandsatcol.mean()
|
303 |
+
postlandsatImg = LcalcNBR(postlandsat)
|
304 |
+
dNBR_landsat = prelandsatImg.subtract(postlandsatImg).multiply(3.23).add(0.01).select('NBR')
|
305 |
+
dNBRclip_ls = dNBR_landsat.clip(bbox)
|
306 |
+
dNBR_composite = ee.ImageCollection([dNBRgoes_compos,dNBRclip_viirs,dNBRclip_ls]).mosaic()
|
307 |
+
else:
|
308 |
+
dNBR_composite = ee.ImageCollection([dNBRgoes_compos,dNBRclip_viirs]).mosaic()
|
309 |
+
|
310 |
+
masked_compos = dNBR_composite.updateMask(maskNoFire) #(SARmask)
|
311 |
+
#doubleMasked_compos = masked_compos.updateMask(maskNoFire)
|
312 |
+
doubleMasked_compos = masked_compos.mask(masked_compos.mask()).float()
|
313 |
+
downloadArgs = {'name': 'VIIRS_burnMap',
|
314 |
+
'crs': 'EPSG:4326',
|
315 |
+
'scale': 60,
|
316 |
+
'region': bbox}
|
317 |
+
url = doubleMasked_compos.getDownloadURL(downloadArgs)
|
318 |
+
|
319 |
+
print(url)
|
320 |
+
noDataVal = -9999
|
321 |
+
unmaskedImage = doubleMasked_compos.unmask(noDataVal, False)
|
322 |
+
|
323 |
+
task = ee.batch.Export.image.toDrive(**{
|
324 |
+
'image': unmaskedImage,
|
325 |
+
'description': "Composite_burnMap6",
|
326 |
+
'folder': "Earth Engine Outputs",
|
327 |
+
'fileNamePrefix': "Composite_burnMap_noData_VIIRS_June18_espg3857_60m",
|
328 |
+
'region': bbox,
|
329 |
+
'crs': 'EPSG:3857',
|
330 |
+
'scale': 60,})
|
331 |
+
#task.start()
|
332 |
+
return masked_compos
|
333 |
+
|
334 |
+
|
335 |
+
self.clear_specific_layers()
|
336 |
+
|
337 |
+
if fire == "North Complex":
|
338 |
+
north_complex = calc_nbr(north_startDate.advance(-7, 'day'), north_startDate, north_startDate.advance(elapDayNum, 'day'), north_startDate.advance(elapDay_plusOne,'day'), north_complex_bb, 17)
|
339 |
+
self.addLayer(north_complex, dNBRvisParams, 'North Complex GOES NBR', True)
|
340 |
+
self.centerObject(north_complex_bb, 9)
|
341 |
+
file = north_complex
|
342 |
+
elif fire == "Dixie":
|
343 |
+
dixie = calc_nbr(dixie_startDate.advance(-7, 'day'), dixie_startDate, dixie_startDate.advance(elapDayNum, 'day'), dixie_startDate.advance(elapDay_plusOne,'day'), dixie_bb, 17)
|
344 |
+
self.addLayer(dixie, dNBRvisParams, 'Dixie Complex GOES NBR', True)
|
345 |
+
self.centerObject(dixie_bb, 9)
|
346 |
+
file = dixie
|
347 |
+
elif fire == "Cameron Peak":
|
348 |
+
cam_peak = calc_nbr(cam_startDate.advance(-7, 'day'), cam_startDate, cam_startDate.advance(elapDayNum, 'day'), cam_startDate.advance(elapDay_plusOne,'day'), cam_peak_bb, 17)
|
349 |
+
self.addLayer(cam_peak, dNBRvisParams, 'Cameron Peak GOES NBR', True)
|
350 |
+
self.centerObject(cam_peak_bb, 9)
|
351 |
+
file = cam_peak
|
352 |
+
elif fire == "August Complex":
|
353 |
+
aug_complex = calc_nbr(aug_startDate.advance(-7, 'day'), aug_startDate, aug_startDate.advance(elapDayNum, 'day'), aug_startDate.advance(elapDay_plusOne,'day'), aug_complex_bb, 17)
|
354 |
+
self.addLayer(aug_complex, dNBRvisParams, 'August Complex GOES NBR', True)
|
355 |
+
self.centerObject(aug_complex_bb, 9)
|
356 |
+
file = aug_complex
|
357 |
+
elif fire == "South Fork":
|
358 |
+
sfork = calc_nbr(sfork_startDate.advance(-7, 'day'), sfork_startDate, sfork_startDate.advance(elapDayNum, 'day'), sfork_startDate.advance(elapDay_plusOne,'day'), sfork_bb, 18)
|
359 |
+
self.addLayer(sfork, dNBRvisParams, 'South Fork GOES NBR', True)
|
360 |
+
self.centerObject(sfork_bb, 9)
|
361 |
+
file = sfork
|
362 |
+
|
363 |
+
def clear_specific_layers(self):
|
364 |
+
layers_to_keep = ['OpenStreetMap']
|
365 |
+
layers = list(self.layers)
|
366 |
+
for layer in layers:
|
367 |
+
if layer.name not in layers_to_keep:
|
368 |
+
self.remove_layer(layer)
|
369 |
+
|
370 |
+
|
371 |
+
def add_selector(self):
|
372 |
+
selector = widgets.Dropdown(options=fireList, value="South Fork", description='Wildfire Case Study:', style={'description_width': '125px'}, layout=widgets.Layout(width='400px'))
|
373 |
+
|
374 |
+
def on_selector_change(change):
|
375 |
+
if change['name'] == 'value':
|
376 |
+
selected_fire.value = change['new']
|
377 |
+
self.customize_ee_data(selected_fire.value, selected_days.value)
|
378 |
+
|
379 |
+
selector.observe(on_selector_change, names='value')
|
380 |
+
self.add_widget(selector, position="topleft")
|
381 |
+
|
382 |
+
def add_intSlider(self):
|
383 |
+
slider = widgets.IntSlider(value=selected_days.value,min=1,max=40,step=1,description='Elapsed days:',style={'description_width': '125px'}, layout=widgets.Layout(width='400px'))
|
384 |
+
|
385 |
+
def on_slider_change(change):
|
386 |
+
if change['name'] == 'value':
|
387 |
+
selected_days.value = change['new']
|
388 |
+
self.customize_ee_data(selected_fire.value, selected_days.value)
|
389 |
+
|
390 |
+
slider.observe(on_slider_change, names='value')
|
391 |
+
self.add_widget(slider, position="topleft")
|
392 |
+
|
393 |
+
def add_dwnldButton(self):
|
394 |
+
button = widgets.Button(description='Download',icon='cloud-arrow-down')
|
395 |
+
|
396 |
+
#def on_button_click(change, file):
|
397 |
+
# if change['name'] == 'value':
|
398 |
+
# selected_days.value = change['new']
|
399 |
+
# self.download_ee_image(file, "trial_file.tif", scale=30)
|
400 |
+
def on_button_click(b):
|
401 |
+
# Get the currently selected fire and elapsed days
|
402 |
+
fire = selected_fire.value
|
403 |
+
elapDays = selected_days.value
|
404 |
+
|
405 |
+
# Customize the EE data and download the image
|
406 |
+
file = self.customize_ee_data(fire, elapDays)
|
407 |
+
#self.download_ee_image(file, f"{fire}_NBR_{elapDays}days.tif", scale=30)
|
408 |
+
|
409 |
+
button.observe(on_button_click)
|
410 |
+
self.add_widget(button, position="topleft")
|
411 |
+
|
412 |
+
|
413 |
+
|
414 |
+
@solara.component
|
415 |
+
def Page():
|
416 |
+
|
417 |
+
with solara.Column(align="center"):
|
418 |
+
markdown = """
|
419 |
+
## Historical Western US wildfires from 2020-2021 """
|
420 |
+
solara.Markdown(markdown)
|
421 |
+
|
422 |
+
# Isolation is required to prevent the map from overlapping navigation (when screen width < 960px)
|
423 |
+
with solara.Column(style={"isolation": "isolate"}):
|
424 |
+
map_widget = Map.element(
|
425 |
+
center=[39, -120.5],
|
426 |
+
zoom=8,
|
427 |
+
height="600px",
|
428 |
+
toolbar_ctrl=False
|
429 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
geemap
|
2 |
+
solara== 1.33.0
|
3 |
+
geopandas
|
4 |
+
pydantic< 2.0
|
5 |
+
ipyevents
|
6 |
+
ipywidgets
|
utils/NBR_calculations.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ee
|
2 |
+
|
3 |
+
''' 0 Good quality fire
|
4 |
+
1 Good quality fire-free land
|
5 |
+
2 Invalid due to opaque cloud
|
6 |
+
3 Invalid due to surface type or sunglint or LZA threshold exceeded or off earth or missing input data
|
7 |
+
4 Invalid due to bad input data
|
8 |
+
5 Invalid due to algorithm failure'''
|
9 |
+
# Bit-masking
|
10 |
+
BitMask_0 = 1 << 0
|
11 |
+
BitMask_1 = 1 << 1
|
12 |
+
BitMask_2 = 1 << 2
|
13 |
+
BitMask_3 = 1 << 3
|
14 |
+
BitMask_4 = 1 << 4
|
15 |
+
BitMask_5 = 1 << 5
|
16 |
+
BitMask_6 = 1 << 6
|
17 |
+
BitMask_7 = 1 << 7
|
18 |
+
BitMask_8 = 1 << 8
|
19 |
+
BitMask_9 = 1 << 9
|
20 |
+
|
21 |
+
def GcalcNBR (goesImg, aoi):
|
22 |
+
#day = ee.Date(eachImg.get('system:time_start')).get('day','America/Los_Angeles')
|
23 |
+
fireMode = goesImg.select('fireMode')
|
24 |
+
fireMin = goesImg.select('fireMin')
|
25 |
+
|
26 |
+
CMI_QF3 = goesImg.select('DQF_C03').int()
|
27 |
+
CMI_QF6 = goesImg.select('DQF_C06').int()
|
28 |
+
|
29 |
+
# To include active fire pixels - fireMin.lt(2)\ for next line
|
30 |
+
QF_Mask = (fireMin.eq(1)\
|
31 |
+
.Or(fireMin.gt(3)))\
|
32 |
+
.And(CMI_QF3.lt(2))\
|
33 |
+
.And(CMI_QF6.lt(2))\
|
34 |
+
.rename('QFmask');
|
35 |
+
GOESm = goesImg.select(['CMI_C03','CMI_C06']).updateMask(QF_Mask)
|
36 |
+
NBR = GOESm.normalizedDifference(['CMI_C03', 'CMI_C06']).toFloat().rename('NBR')
|
37 |
+
|
38 |
+
return goesImg.addBands([NBR,QF_Mask])
|
39 |
+
|
40 |
+
def GcalcCCsingle (goesImg):
|
41 |
+
|
42 |
+
fireDQF = goesImg.select('DQF').int()
|
43 |
+
CMI_QF3 = goesImg.select('DQF_C03').int()
|
44 |
+
CMI_QF6 = goesImg.select('DQF_C06').int()
|
45 |
+
|
46 |
+
#Right now, cloud mask is excluding clouds and water; active fire, bad data and fire free are unmasked. NBR mask exlcudes fire
|
47 |
+
F_Mask = fireDQF.eq(0)
|
48 |
+
C_Mask = (fireDQF.lt(2).Or(fireDQF.gt(2))).rename('C_Mask')
|
49 |
+
#.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('C_Mask')
|
50 |
+
QF_Mask = (fireDQF.eq(1).Or(fireDQF.gt(3)))\
|
51 |
+
.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('QFmask')
|
52 |
+
|
53 |
+
GOESmasked = goesImg.select(['CMI_C03','CMI_C06']).updateMask(QF_Mask)
|
54 |
+
NBRmasked = GOESmasked.normalizedDifference(['CMI_C03', 'CMI_C06']).toFloat().rename('NBR')
|
55 |
+
cloudMasked = goesImg.select('CMI_C03').updateMask(C_Mask).toFloat().rename('CC')
|
56 |
+
fireMasked = goesImg.select('CMI_C03').updateMask(F_Mask).toFloat().rename('FC')
|
57 |
+
|
58 |
+
return goesImg.addBands([NBRmasked,cloudMasked, fireMasked,QF_Mask,C_Mask])
|
59 |
+
|
60 |
+
'''Parameter Array Name Value Bit(s) = Value
|
61 |
+
Sun Glint QF1 Surface Reflectance None 6-7 = 00
|
62 |
+
Low Sun Mask QF1 Surface Reflectance High 5 = 0
|
63 |
+
Day/Night QF1 Surface Reflectance Day 4 =0
|
64 |
+
Cloud Detection QF1 Surface Reflectance Confident Clear 2-3 = 00 or Problably Clear 2-3 = 01
|
65 |
+
Cloud Mask Quality QF1 Surface Reflectance High or Medium 0-1 = 10 or 11
|
66 |
+
Snow/Ice QF2 Surface Reflectance No Snow or Ice 5 = 0
|
67 |
+
Cloud Shadow QF2 Surface Reflectance No Cloud Shadow 3 = 0
|
68 |
+
LandWater QF2 Surface Reflectance Land, Snow, Arctic, Antarctic or Greenland, Desert 0-2 = 011, 100, 101, 110, 111
|
69 |
+
Thin Cirrus Flag QF7 Surface Reflectance No Thin Cirrus 4 = 0
|
70 |
+
Aerosol Quantity QF7 Surface Reflectance Climatology, Low or Medium 2-3 = 00, 01 or 10
|
71 |
+
Adjacent to Cloud QF7 Surface Reflectance Not Adjacent to Cloud 1 = 0'''
|
72 |
+
|
73 |
+
def VcalcNBR (VIIRSimg):
|
74 |
+
|
75 |
+
QF1 = VIIRSimg.select('QF1').int()
|
76 |
+
QF2 = VIIRSimg.select('QF2').int()
|
77 |
+
QF7 = VIIRSimg.select('QF7').int()
|
78 |
+
|
79 |
+
QF_Mask = (QF1.bitwiseAnd(BitMask_3).eq(0)).And\
|
80 |
+
((QF2.bitwiseAnd(BitMask_2).eq(4)).Or((QF2.bitwiseAnd(BitMask_1).eq(0)))).And\
|
81 |
+
(QF2.bitwiseAnd(BitMask_5).eq(0)).rename('QFmask');
|
82 |
+
|
83 |
+
VIIRSm = VIIRSimg.select(['I2','M11']).updateMask(QF_Mask);
|
84 |
+
NBR = VIIRSm.normalizedDifference(['I2','M11']).toFloat().rename('NBR')
|
85 |
+
return VIIRSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR)
|
86 |
+
|
87 |
+
''' Bit 1: Dilated Cloud
|
88 |
+
Bit 2: Cirrus (high confidence)
|
89 |
+
Bit 3: Cloud
|
90 |
+
Bit 4: Cloud Shadow
|
91 |
+
Bit 5: Snow
|
92 |
+
Bit 6: Clear (0: Cloud or Dilated Cloud bits are set, 1: Cloud and Dilated Cloud bits are not set)
|
93 |
+
Bit 7: Water
|
94 |
+
Bits 8-9: Cloud Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
95 |
+
Bits 10-11: Cloud Shadow Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
96 |
+
Bits 12-13: Snow/Ice Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
97 |
+
Bits 14-15: Cirrus Confidence (0: None, 1: Low, 2: Medium, 3: High)'''
|
98 |
+
|
99 |
+
def LcalcNBR (LSimg):
|
100 |
+
QApixel = LSimg.select('QA_PIXEL').int()
|
101 |
+
QF_Mask =(QApixel.bitwiseAnd(BitMask_3).eq(0)).And\
|
102 |
+
(QApixel.bitwiseAnd(BitMask_5).eq(0)).And\
|
103 |
+
(QApixel.bitwiseAnd(BitMask_7).eq(0)).rename('QFmask');
|
104 |
+
|
105 |
+
LSmasked = LSimg.select(['SR_B5','SR_B7']).updateMask(QF_Mask);
|
106 |
+
NBR = LSmasked.normalizedDifference(['SR_B5','SR_B7']).toFloat().rename('NBR')
|
107 |
+
return LSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR)
|
108 |
+
|
109 |
+
''' 1 Saturated or defective
|
110 |
+
2 Dark Area Pixels
|
111 |
+
3 Cloud Shadows
|
112 |
+
4 Vegetation
|
113 |
+
5 Bare Soils
|
114 |
+
6 Water
|
115 |
+
7 Clouds Low Probability / Unclassified
|
116 |
+
8 Clouds Medium Probability
|
117 |
+
9 Clouds High Probability
|
118 |
+
10 Cirrus
|
119 |
+
11 Snow / Ice'''
|
120 |
+
|
121 |
+
def ScalcNBR (sentImg):
|
122 |
+
SCL = sentImg.select('SCL');
|
123 |
+
QF_Mask =(SCL.neq(6)).And\
|
124 |
+
(SCL.neq(8)).And\
|
125 |
+
(SCL.neq(9)).And\
|
126 |
+
(SCL.neq(11))\
|
127 |
+
.rename('QFmask');
|
128 |
+
sentMasked = sentImg.select(['B8A','B12']).updateMask(QF_Mask); #B8 is another option- broadband NIR
|
129 |
+
NBR = sentMasked.normalizedDifference(['B8A','B12']).toFloat().rename('NBR')
|
130 |
+
return sentImg.addBands(NBR).addBands(QF_Mask).addBands(SCL)#.set('avgNBR', avgNBR)
|
utils/__init__.py
ADDED
File without changes
|