Spaces:
Sleeping
Sleeping
import ee | |
import geemap | |
import solara | |
import ipywidgets as widgets | |
import datetime | |
#from NBR_calculations import GcalcNBR, VcalcNBR, LcalcNBR, ScalcNBR, GcalcCCsingle | |
import requests | |
# Bit-masking | |
BitMask_0 = 1 << 0 | |
BitMask_1 = 1 << 1 | |
BitMask_2 = 1 << 2 | |
BitMask_3 = 1 << 3 | |
BitMask_4 = 1 << 4 | |
BitMask_5 = 1 << 5 | |
BitMask_6 = 1 << 6 | |
BitMask_7 = 1 << 7 | |
BitMask_8 = 1 << 8 | |
BitMask_9 = 1 << 9 | |
def GcalcCCsingle (goesImg): | |
fireDQF = goesImg.select('DQF').int() | |
CMI_QF3 = goesImg.select('DQF_C03').int() | |
CMI_QF6 = goesImg.select('DQF_C06').int() | |
#Right now, cloud mask is excluding clouds and water; active fire, bad data and fire free are unmasked. NBR mask exlcudes fire | |
F_Mask = fireDQF.eq(0) | |
C_Mask = (fireDQF.lt(2).Or(fireDQF.gt(2))).rename('C_Mask') | |
#.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('C_Mask') | |
QF_Mask = (fireDQF.eq(1).Or(fireDQF.gt(3)))\ | |
.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('QFmask') | |
GOESmasked = goesImg.select(['CMI_C03','CMI_C06']).updateMask(QF_Mask) | |
NBRmasked = GOESmasked.normalizedDifference(['CMI_C03', 'CMI_C06']).toFloat().rename('NBR') | |
cloudMasked = goesImg.select('CMI_C03').updateMask(C_Mask).toFloat().rename('CC') | |
fireMasked = goesImg.select('CMI_C03').updateMask(F_Mask).toFloat().rename('FC') | |
return goesImg.addBands([NBRmasked,cloudMasked, fireMasked,QF_Mask,C_Mask]) | |
'''Parameter Array Name Value Bit(s) = Value | |
Sun Glint QF1 Surface Reflectance None 6-7 = 00 | |
Low Sun Mask QF1 Surface Reflectance High 5 = 0 | |
Day/Night QF1 Surface Reflectance Day 4 =0 | |
Cloud Detection QF1 Surface Reflectance Confident Clear 2-3 = 00 or Problably Clear 2-3 = 01 | |
Cloud Mask Quality QF1 Surface Reflectance High or Medium 0-1 = 10 or 11 | |
Snow/Ice QF2 Surface Reflectance No Snow or Ice 5 = 0 | |
Cloud Shadow QF2 Surface Reflectance No Cloud Shadow 3 = 0 | |
LandWater QF2 Surface Reflectance Land, Snow, Arctic, Antarctic or Greenland, Desert 0-2 = 011, 100, 101, 110, 111 | |
Thin Cirrus Flag QF7 Surface Reflectance No Thin Cirrus 4 = 0 | |
Aerosol Quantity QF7 Surface Reflectance Climatology, Low or Medium 2-3 = 00, 01 or 10 | |
Adjacent to Cloud QF7 Surface Reflectance Not Adjacent to Cloud 1 = 0''' | |
def VcalcNBR (VIIRSimg): | |
QF1 = VIIRSimg.select('QF1').int() | |
QF2 = VIIRSimg.select('QF2').int() | |
QF7 = VIIRSimg.select('QF7').int() | |
QF_Mask = (QF1.bitwiseAnd(BitMask_3).eq(0)).And\ | |
((QF2.bitwiseAnd(BitMask_2).eq(4)).Or((QF2.bitwiseAnd(BitMask_1).eq(0)))).And\ | |
(QF2.bitwiseAnd(BitMask_5).eq(0)).rename('QFmask'); | |
VIIRSm = VIIRSimg.select(['I2','M11']).updateMask(QF_Mask); | |
NBR = VIIRSm.normalizedDifference(['I2','M11']).toFloat().rename('NBR') | |
return VIIRSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR) | |
''' Bit 1: Dilated Cloud | |
Bit 2: Cirrus (high confidence) | |
Bit 3: Cloud | |
Bit 4: Cloud Shadow | |
Bit 5: Snow | |
Bit 6: Clear (0: Cloud or Dilated Cloud bits are set, 1: Cloud and Dilated Cloud bits are not set) | |
Bit 7: Water | |
Bits 8-9: Cloud Confidence (0: None, 1: Low, 2: Medium, 3: High) | |
Bits 10-11: Cloud Shadow Confidence (0: None, 1: Low, 2: Medium, 3: High) | |
Bits 12-13: Snow/Ice Confidence (0: None, 1: Low, 2: Medium, 3: High) | |
Bits 14-15: Cirrus Confidence (0: None, 1: Low, 2: Medium, 3: High)''' | |
def LcalcNBR (LSimg): | |
QApixel = LSimg.select('QA_PIXEL').int() | |
QF_Mask =(QApixel.bitwiseAnd(BitMask_3).eq(0)).And\ | |
(QApixel.bitwiseAnd(BitMask_5).eq(0)).And\ | |
(QApixel.bitwiseAnd(BitMask_7).eq(0)).rename('QFmask'); | |
LSmasked = LSimg.select(['SR_B5','SR_B7']).updateMask(QF_Mask); | |
NBR = LSmasked.normalizedDifference(['SR_B5','SR_B7']).toFloat().rename('NBR') | |
return LSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR) | |
''' 1 Saturated or defective | |
2 Dark Area Pixels | |
3 Cloud Shadows | |
4 Vegetation | |
5 Bare Soils | |
6 Water | |
7 Clouds Low Probability / Unclassified | |
8 Clouds Medium Probability | |
9 Clouds High Probability | |
10 Cirrus | |
11 Snow / Ice''' | |
def ScalcNBR (sentImg): | |
SCL = sentImg.select('SCL'); | |
QF_Mask =(SCL.neq(6)).And\ | |
(SCL.neq(8)).And\ | |
(SCL.neq(9)).And\ | |
(SCL.neq(11))\ | |
.rename('QFmask'); | |
sentMasked = sentImg.select(['B8A','B12']).updateMask(QF_Mask); #B8 is another option- broadband NIR | |
NBR = sentMasked.normalizedDifference(['B8A','B12']).toFloat().rename('NBR') | |
return sentImg.addBands(NBR).addBands(QF_Mask).addBands(SCL)#.set('avgNBR', avgNBR) | |
#createDates = NIFC_perims_716.aggregate_array('attr_Cre_1') | |
#incidentIDs = NIFC_perims_716.aggregate_array('poly_Incid') | |
#fireList = incidentIDs.getInfo() | |
fireList = wildfire_names = [ "FRESNO JUNE LIGHTNING COMPLEX", "Larch Creek","Deadman","Cow Valley","0404 RV LONE ROCK", | |
"PIONEER","South Fork", "Deer Springs","Basin","Lake","Horse Gulch","Falls","Silver King","Indios"] | |
selected_fire = solara.reactive(fireList[6]) | |
dNBRvisParams = {'min': 0.0,'max': 0.8, 'palette': ['green', 'yellow','orange','red']} | |
today = datetime.datetime.today().strftime('%Y-%m-%d') | |
class Map(geemap.Map): | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
self.add_basemap('OpenStreetMap') | |
self.customize_ee_data(selected_fire.value, today) | |
self.add_selector() | |
self.add_dwnldButton() | |
self.add("layer_manager") | |
self.remove("draw_control") | |
def customize_ee_data(self, fireID, elapDays): | |
NIFC_perims_716 = ee.FeatureCollection('projects/ovcrge-ssec-burn-scar-map-c116/assets/NIFC_perimeters_7-16') | |
fire = NIFC_perims_716.filter(ee.Filter.eq('poly_Incid',fireID)).first() | |
timestamp = fire.get('attr_Cre_1') | |
geom = fire.geometry() | |
startDate = ee.Date(timestamp)#.format('YYYY-MM-dd') | |
endDate = ee.Date.parse('YYYY-MM-dd', str(today)) | |
boundingBox = ee.Geometry(geom.buffer(5000).bounds()) | |
elapDayNum = ee.Number(10) | |
elapDay_plusOne = elapDayNum.add(ee.Number(1)) | |
def calc_nbr(pre_start, pre_stop, post_start, post_stop, bbox, goes): | |
def MergeBands (eachImage): | |
oneImage = ee.Image.cat(eachImage.get('CMI'), eachImage.get('FDC')) | |
return oneImage | |
displacementImg18 = ee.Image.load('projects/ee-losos/assets/G18-F-meter-offset_GEE') | |
y_dif = displacementImg18.select([1]) | |
x_dif = displacementImg18.select([0]).multiply(-1) | |
displacement18 = ee.Image([x_dif, y_dif]) | |
displacementImg16 = ee.Image.load('projects/ee-losos/assets/G16-F-meter-offset_GEE') | |
y_dif = displacementImg16.select([1]) | |
x_dif = displacementImg16.select([0]).multiply(-1) | |
displacement16 = ee.Image([x_dif, y_dif]); | |
preCMIcol = ee.ImageCollection(f"NOAA/GOES/{goes}/MCMIPF").filter(ee.Filter.date(pre_start, pre_stop))\ | |
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST | |
preFDCcol = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(pre_start, pre_stop))\ | |
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST | |
postCMIcol = ee.ImageCollection(f"NOAA/GOES/{goes}/MCMIPF").filter(ee.Filter.date(post_start, post_stop))\ | |
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST | |
postFDCcol = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(post_start, post_stop))\ | |
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST | |
prejoinedGOES = ee.Join.inner('CMI','FDC').apply( | |
primary = preCMIcol, | |
secondary = preFDCcol, | |
condition = ee.Filter.maxDifference( | |
difference = 10, #milliseconds | |
leftField = 'system:time_start', | |
rightField = 'system:time_start',)) | |
preMiddayGOEScol = ee.ImageCollection(prejoinedGOES.map(lambda object: MergeBands(object))) | |
preMiddayGOEScol = preMiddayGOEScol.map(GcalcCCsingle) | |
pre_meanNBR = preMiddayGOEScol.select(['NBR']).mean() | |
pre_meanNBR = pre_meanNBR.multiply(1.18).subtract(0.12) | |
postjoinedGOES = ee.Join.inner('CMI','FDC').apply( | |
primary = postCMIcol, | |
secondary = postFDCcol, | |
condition = ee.Filter.maxDifference( | |
difference = 10, #milliseconds | |
leftField = 'system:time_start', | |
rightField = 'system:time_start',)) | |
postMiddayGOEScol = ee.ImageCollection(postjoinedGOES.map(lambda object: MergeBands(object))) | |
postMiddayGOEScol = postMiddayGOEScol.map(GcalcCCsingle) | |
post_meanNBR = postMiddayGOEScol.select(['NBR']).mean() | |
post_meanNBR = post_meanNBR.multiply(1.18).subtract(0.12) | |
dNBR_goes17 = pre_meanNBR.subtract(post_meanNBR).select('NBR') | |
#GOES-16 | |
preCMIcol = ee.ImageCollection("NOAA/GOES/16/MCMIPF").filter(ee.Filter.date(pre_start, pre_stop))\ | |
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST | |
preFDCcol = ee.ImageCollection("NOAA/GOES/16/FDCF").filter(ee.Filter.date(pre_start, pre_stop))\ | |
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST | |
prejoinedGOES = ee.Join.inner('CMI','FDC').apply( | |
primary = preCMIcol, | |
secondary = preFDCcol, | |
condition = ee.Filter.maxDifference( | |
difference = 10, #milliseconds | |
leftField = 'system:time_start', | |
rightField = 'system:time_start',)) | |
preMiddayGOEScol = ee.ImageCollection(prejoinedGOES.map(lambda object: MergeBands(object))) | |
preMiddayGOEScol = preMiddayGOEScol.map(GcalcCCsingle) | |
pre_meanNBR = preMiddayGOEScol.select(['NBR']).mean() | |
pre_meanNBR = pre_meanNBR.multiply(1.18).subtract(0.12) | |
postCMIcol = ee.ImageCollection("NOAA/GOES/16/MCMIPF").filter(ee.Filter.date(post_start, post_stop))\ | |
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST | |
postFDCcol = ee.ImageCollection("NOAA/GOES/16/FDCF").filter(ee.Filter.date(post_start, post_stop))\ | |
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST | |
postjoinedGOES = ee.Join.inner('CMI','FDC').apply( | |
primary = postCMIcol, | |
secondary = postFDCcol, | |
condition = ee.Filter.maxDifference( | |
difference = 10, #milliseconds | |
leftField = 'system:time_start', | |
rightField = 'system:time_start',)) | |
postMiddayGOEScol = ee.ImageCollection(postjoinedGOES.map(lambda object: MergeBands(object))) | |
postMiddayGOEScol = postMiddayGOEScol.map(GcalcCCsingle) | |
post_meanNBR = postMiddayGOEScol.select(['NBR']).mean() | |
post_meanNBR = post_meanNBR.multiply(1.18).subtract(0.12) | |
dNBR_goes16 = pre_meanNBR.subtract(post_meanNBR).select('NBR') | |
dNBRclip_goes17= dNBR_goes17.clip(bbox) | |
dNBRclip_goes16= dNBR_goes16.clip(bbox) | |
dNBRdisp_goes17 = dNBRclip_goes17.displace(displacement18, 'bicubic') | |
dNBRdisp_goes16 = dNBRclip_goes16.displace(displacement16, 'bicubic') | |
dNBRgoes_compos = ee.ImageCollection([dNBRdisp_goes17,dNBRdisp_goes16]).mean() | |
#ACTIVE fire | |
activeFire18 = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(pre_stop, post_stop)) | |
activeFire16 = ee.ImageCollection(f"NOAA/GOES/16/FDCF").filter(ee.Filter.date(pre_stop, post_stop)) | |
sumFRP18 = activeFire18.select('Power').sum().rename('sumFRP') | |
sumFRP16 = activeFire16.select('Power').sum().rename('sumFRP') | |
maskNoFire18 = sumFRP18.gt(200).displace(displacement18, 'bicubic') | |
maskNoFire16 = sumFRP16.gt(200).displace(displacement16, 'bicubic') | |
maskNoFire = ee.ImageCollection([maskNoFire18,maskNoFire16]).sum().gt(0) | |
''' | |
activeSNPP = ee.ImageCollection("NASA/LANCE/SNPP_VIIRS/C2").filter(ee.Filter.date(pre_stop, post_stop)) | |
activeNOAA20 = ee.ImageCollection("NASA/LANCE/NOAA20_VIIRS/C2").filter(ee.Filter.date(pre_stop, post_stop)) | |
sumFRP_SNPP = activeSNPP.select('confidence').max().rename('sumFRP') | |
sumFRP_NOAA20 = activeNOAA20.select('confidence').max().rename('sumFRP') | |
#maskNoFire = ee.ImageCollection([sumFRP_SNPP,sumFRP_NOAA20]).sum().gt(0) | |
maskNoFire = sumFRP_SNPP.gt(0) | |
''' | |
#VIIRS | |
preVIIRSimg = ee.ImageCollection("NASA/VIIRS/002/VNP09GA").filter(ee.Filter.date(pre_start, pre_stop)).mean() | |
postVIIRSimgCol = ee.ImageCollection("NASA/VIIRS/002/VNP09GA").filter(ee.Filter.date(post_start, post_stop)) #TO FIX ON JUNE 18 sfork_startDate.advance(24, 'day'), sfork_startDate.advance(25,'day') | |
#Landsat | |
prelandsat8col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox) | |
postlandsat8col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").filterDate(post_start, post_stop).filterBounds(bbox) | |
prelandsat9col = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox) | |
postlandsat9col = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2").filterDate(post_start, post_stop).filterBounds(bbox) | |
prelandsatcol = prelandsat8col.merge(prelandsat9col) | |
postlandsatcol = postlandsat8col.merge(postlandsat9col) | |
#Sentinel | |
presentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox) | |
postsentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(post_start, post_stop).filterBounds(bbox) #TO FIX on JULY 5: sfork_startDate.advance(32, 'day'), sfork_startDate.advance(33,'day') | |
#olderPostSentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(sfork_startDate.advance(37, 'day'), sfork_startDate.advance(38,'day')).filterBounds(bbox) | |
#SAR | |
#SARimg = ee.Image('projects/ovcrge-ssec-burn-scar-map-c116/assets/burned_20200907_20200919_test') | |
#SARmask = SARimg.eq(1) | |
if postVIIRSimgCol.size().getInfo() > 0: | |
postVIIRSimg = postVIIRSimgCol.mean() | |
preVIIRSimg = VcalcNBR(preVIIRSimg) | |
postVIIRSimg = VcalcNBR(postVIIRSimg) | |
dNBR_viirs = preVIIRSimg.subtract(postVIIRSimg).select('NBR') | |
dNBRclip_viirs = dNBR_viirs.clip(bbox) | |
else: | |
dNBR_composite = dNBRgoes_compos | |
if postsentCol.size().getInfo() > 0: | |
presentMean = presentCol.mean() | |
postsentMean = postsentCol.mean() | |
presentImg = ScalcNBR(presentMean) | |
postsentImg = ScalcNBR(postsentMean) | |
dnbr_sent = presentImg.subtract(postsentImg).multiply(1.3).add(0.05).select('NBR') | |
dNBRclip_sent = dnbr_sent.clip(bbox) | |
dNBR_composite = ee.ImageCollection([dNBRgoes_compos,dNBRclip_sent]).mosaic() #dNBRclip_viirs SHOULD GO IN IF UP TO DATE | |
elif postlandsatcol.size().getInfo() > 0: | |
prelandsat = prelandsatcol.mean() | |
prelandsatImg = LcalcNBR(prelandsat) | |
postlandsat = postlandsatcol.mean() | |
postlandsatImg = LcalcNBR(postlandsat) | |
dNBR_landsat = prelandsatImg.subtract(postlandsatImg).multiply(3.23).add(0.01).select('NBR') | |
dNBRclip_ls = dNBR_landsat.clip(bbox) | |
dNBR_composite = ee.ImageCollection([dNBRgoes_compos,dNBRclip_ls]).mosaic() #dNBRclip_viirs SHOULD GO IN IF UP TO DATE | |
else: | |
dNBR_composite = ee.ImageCollection([dNBRgoes_compos]).mosaic() #dNBRclip_viirs SHOULD GO IN IF UP TO DATE | |
masked_compos = dNBR_composite.updateMask(maskNoFire) #(SARmask) | |
#doubleMasked_compos = masked_compos.updateMask(maskNoFire) | |
doubleMasked_compos = masked_compos.mask(masked_compos.mask()).float() | |
downloadArgs = {'name': 'VIIRS_burnMap', | |
'crs': 'EPSG:4326', | |
'scale': 60, | |
'region': bbox} | |
url = doubleMasked_compos.getDownloadURL(downloadArgs) | |
print(url) | |
noDataVal = -9999 | |
unmaskedImage = doubleMasked_compos.unmask(noDataVal, False) | |
task = ee.batch.Export.image.toDrive(**{ | |
'image': unmaskedImage, | |
'description': "Composite_burnMap6", | |
'folder': "Earth Engine Outputs", | |
'fileNamePrefix': "Composite_burnMap_noData_VIIRS_June18_espg3857_60m", | |
'region': bbox, | |
'crs': 'EPSG:3857', | |
'scale': 60,}) | |
task.start() | |
return masked_compos | |
self.clear_specific_layers() | |
fireImg = calc_nbr(startDate.advance(-7, 'day'), startDate, endDate.advance(-3, 'day'), endDate, boundingBox, 18) | |
self.addLayer(fireImg, dNBRvisParams, fireID, True) | |
self.centerObject(boundingBox, 10) | |
file = fireImg | |
def clear_specific_layers(self): | |
layers_to_keep = ['OpenStreetMap'] | |
layers = list(self.layers) | |
for layer in layers: | |
if layer.name not in layers_to_keep: | |
self.remove_layer(layer) | |
def add_selector(self): | |
selector = widgets.Dropdown(options=fireList, value=fireList[6], description='Current wildfire :', style={'description_width': '125px'}, layout=widgets.Layout(width='400px')) | |
def on_selector_change(change): | |
if change['name'] == 'value': | |
selected_fire.value = change['new'] | |
self.customize_ee_data(selected_fire.value, today) | |
selector.observe(on_selector_change, names='value') | |
self.add_widget(selector, position="topleft") | |
def add_dwnldButton(self): | |
button = widgets.Button(description='Export to Drive',icon='cloud-arrow-down') | |
#def on_button_click(change, file): | |
# if change['name'] == 'value': | |
# selected_days.value = change['new'] | |
# self.download_ee_image(file, "trial_file.tif", scale=30) | |
def on_button_click(b): | |
# Get the currently selected fire and elapsed days | |
fire = selected_fire.value | |
elapDays = today | |
# Customize the EE data and download the image | |
file = self.customize_ee_data(fire, elapDays) | |
#self.download_ee_image(file, f"{fire}_NBR_{elapDays}days.tif", scale=30) | |
button.observe(on_button_click) | |
self.add_widget(button, position="topleft") | |
def Page(): | |
with solara.Column(align="center"): | |
markdown = """ | |
## Current 2024 wildfires over 10,000 acres""" | |
solara.Markdown(markdown) | |
# Isolation is required to prevent the map from overlapping navigation (when screen width < 960px) | |
with solara.Column(style={"isolation": "isolate"}): | |
map_widget = Map.element( | |
center=[39, -120.5], | |
zoom=8, | |
height="600px", | |
toolbar_ctrl=False | |
) |