cover generation and ui changes
Browse files
app.py
CHANGED
@@ -1,67 +1,124 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import pipeline
|
|
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
text_generator = pipeline(
|
8 |
-
"text-generation", model=
|
9 |
-
)
|
10 |
-
summarizer = pipeline(
|
11 |
-
"summarization", model="sshleifer/distilbart-cnn-12-6", device=device
|
12 |
)
|
|
|
13 |
title_generator = pipeline(
|
14 |
"text2text-generation",
|
15 |
-
model=
|
16 |
-
device=
|
|
|
|
|
|
|
|
|
17 |
)
|
|
|
18 |
|
19 |
|
20 |
-
def generate_blog_post(query):
|
21 |
print("Generating article.")
|
22 |
-
article = text_generator(query, max_length=
|
23 |
-
|
24 |
-
]
|
25 |
print(f"{article = }")
|
26 |
|
27 |
print("Generating the title.")
|
28 |
-
title = title_generator(article, max_length=
|
29 |
-
|
30 |
-
]
|
31 |
print(f"{title = }")
|
32 |
|
33 |
print("Generating the summary.")
|
34 |
-
summary = summarizer(
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
37 |
print(f"{summary = }")
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
|
42 |
with gr.Blocks() as iface:
|
43 |
gr.Markdown("# Blog Post Generator")
|
44 |
gr.Markdown(
|
45 |
-
"Enter a topic, and I'll generate a blog post with a title, cover image, and summary!"
|
46 |
)
|
47 |
|
48 |
with gr.Row():
|
49 |
-
|
50 |
|
51 |
-
|
|
|
52 |
|
53 |
with gr.Row():
|
54 |
with gr.Column(scale=2):
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
with gr.Column(scale=1):
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
generate_button.click(
|
62 |
generate_blog_post,
|
63 |
-
inputs=
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
65 |
)
|
66 |
|
67 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import pipeline
|
4 |
+
from diffusers import StableDiffusionPipeline
|
5 |
|
6 |
+
ARTICLE_GENERATOR_MODEL = "gpt2"
|
7 |
+
SUMMARIZER_MODEL = "Falconsai/text_summarization"
|
8 |
+
TITLE_GENERATOR_MODEL = "czearing/article-title-generator"
|
9 |
+
IMAGE_GENERATOR_MODEL = "prompthero/openjourney-v4"
|
10 |
+
|
11 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
print(f"{DEVICE = }")
|
13 |
|
14 |
text_generator = pipeline(
|
15 |
+
"text-generation", model=ARTICLE_GENERATOR_MODEL, device=DEVICE
|
|
|
|
|
|
|
16 |
)
|
17 |
+
summarizer = pipeline("summarization", model=SUMMARIZER_MODEL, device=DEVICE)
|
18 |
title_generator = pipeline(
|
19 |
"text2text-generation",
|
20 |
+
model=TITLE_GENERATOR_MODEL,
|
21 |
+
device=DEVICE,
|
22 |
+
)
|
23 |
+
image_generator = StableDiffusionPipeline.from_pretrained(
|
24 |
+
IMAGE_GENERATOR_MODEL,
|
25 |
+
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
|
26 |
)
|
27 |
+
image_generator = image_generator.to(DEVICE)
|
28 |
|
29 |
|
30 |
+
def generate_blog_post(query, article_length, title_length, summary_length):
|
31 |
print("Generating article.")
|
32 |
+
article = text_generator(query, max_length=article_length, num_return_sequences=1)[
|
33 |
+
0
|
34 |
+
]["generated_text"]
|
35 |
print(f"{article = }")
|
36 |
|
37 |
print("Generating the title.")
|
38 |
+
title = title_generator(article, max_length=title_length, num_return_sequences=1)[
|
39 |
+
0
|
40 |
+
]["generated_text"]
|
41 |
print(f"{title = }")
|
42 |
|
43 |
print("Generating the summary.")
|
44 |
+
summary = summarizer(
|
45 |
+
article,
|
46 |
+
max_length=summary_length,
|
47 |
+
min_length=min(30, summary_length),
|
48 |
+
do_sample=False,
|
49 |
+
)[0]["summary_text"]
|
50 |
print(f"{summary = }")
|
51 |
|
52 |
+
print("Generating the cover image.")
|
53 |
+
image = image_generator(
|
54 |
+
summary, num_inference_steps=40, guidance_scale=7.5, width=512, height=512
|
55 |
+
).images[0]
|
56 |
+
|
57 |
+
return title, summary, article, image
|
58 |
|
59 |
|
60 |
with gr.Blocks() as iface:
|
61 |
gr.Markdown("# Blog Post Generator")
|
62 |
gr.Markdown(
|
63 |
+
"Enter a topic, and I'll generate a blog post with a title, cover image, and optional summary!"
|
64 |
)
|
65 |
|
66 |
with gr.Row():
|
67 |
+
input_prompt = gr.Textbox(lines=2, placeholder="Enter your blog post topic...")
|
68 |
|
69 |
+
with gr.Row():
|
70 |
+
generate_button = gr.Button("Generate Blog Post", size="sm")
|
71 |
|
72 |
with gr.Row():
|
73 |
with gr.Column(scale=2):
|
74 |
+
with gr.Blocks() as title_block:
|
75 |
+
gr.Markdown("## Title")
|
76 |
+
|
77 |
+
with gr.Accordion("Options", open=False):
|
78 |
+
title_length = gr.Slider(
|
79 |
+
minimum=10, maximum=50, value=30, step=5, label="Title Length"
|
80 |
+
)
|
81 |
+
title_output = gr.Textbox(label="Title")
|
82 |
+
|
83 |
+
with gr.Blocks() as body_block:
|
84 |
+
gr.Markdown("## Body")
|
85 |
+
|
86 |
+
with gr.Accordion("Options", open=False):
|
87 |
+
article_length = gr.Slider(
|
88 |
+
minimum=100,
|
89 |
+
maximum=1000,
|
90 |
+
value=500,
|
91 |
+
step=50,
|
92 |
+
label="Article Length",
|
93 |
+
)
|
94 |
+
article_output = gr.Textbox(label="Article", lines=10)
|
95 |
|
96 |
with gr.Column(scale=1):
|
97 |
+
with gr.Blocks() as image_block:
|
98 |
+
gr.Markdown("## Cover Image")
|
99 |
+
image_output = gr.Image(label="Cover Image")
|
100 |
+
|
101 |
+
with gr.Blocks() as summary_block:
|
102 |
+
gr.Markdown("## Summary")
|
103 |
+
with gr.Accordion("Options", open=False):
|
104 |
+
summary_length = gr.Slider(
|
105 |
+
minimum=30,
|
106 |
+
maximum=200,
|
107 |
+
value=100,
|
108 |
+
step=10,
|
109 |
+
label="Summary Length",
|
110 |
+
)
|
111 |
+
summary_output = gr.Textbox(label="Summary", lines=5)
|
112 |
|
113 |
+
job = generate_button.click(
|
114 |
generate_blog_post,
|
115 |
+
inputs=[
|
116 |
+
input_prompt,
|
117 |
+
article_length,
|
118 |
+
title_length,
|
119 |
+
summary_length,
|
120 |
+
],
|
121 |
+
outputs=[title_output, summary_output, article_output, image_output],
|
122 |
)
|
123 |
|
124 |
iface.launch()
|