cover generation removed
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from diffusers import StableDiffusionPipeline
|
4 |
from transformers import pipeline
|
5 |
|
6 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -17,39 +16,27 @@ title_generator = pipeline(
|
|
17 |
device=device,
|
18 |
)
|
19 |
|
20 |
-
stable_diffusion = StableDiffusionPipeline.from_pretrained("prompthero/openjourney-v4")
|
21 |
-
stable_diffusion.to(device)
|
22 |
-
|
23 |
|
24 |
def generate_blog_post(query):
|
25 |
-
# Generate the article
|
26 |
print("Generating article.")
|
27 |
article = text_generator(query, max_length=500, num_return_sequences=1)[0][
|
28 |
"generated_text"
|
29 |
]
|
30 |
print(f"{article = }")
|
31 |
|
32 |
-
# Generate a title for the article
|
33 |
print("Generating the title.")
|
34 |
title = title_generator(article, max_length=30, num_return_sequences=1)[0][
|
35 |
"generated_text"
|
36 |
]
|
37 |
print(f"{title = }")
|
38 |
|
39 |
-
# Generate a cover image using Stable Diffusion
|
40 |
-
print("Generating the cover.")
|
41 |
-
cover = stable_diffusion(title, num_inference_steps=20, guidance_scale=7.5).images[
|
42 |
-
0
|
43 |
-
]
|
44 |
-
|
45 |
-
# Generate a summary of the article
|
46 |
print("Generating the summary.")
|
47 |
summary = summarizer(article, max_length=100, min_length=30, do_sample=False)[0][
|
48 |
"summary_text"
|
49 |
]
|
50 |
print(f"{summary = }")
|
51 |
|
52 |
-
return title,
|
53 |
|
54 |
|
55 |
with gr.Blocks() as iface:
|
@@ -69,13 +56,12 @@ with gr.Blocks() as iface:
|
|
69 |
article_output = gr.Textbox(label="Article", lines=10)
|
70 |
|
71 |
with gr.Column(scale=1):
|
72 |
-
cover_output = gr.Image(label="Cover")
|
73 |
summary_output = gr.Textbox(label="Summary", lines=5)
|
74 |
|
75 |
generate_button.click(
|
76 |
generate_blog_post,
|
77 |
inputs=topic_input,
|
78 |
-
outputs=[title_output,
|
79 |
)
|
80 |
|
81 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from transformers import pipeline
|
4 |
|
5 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
16 |
device=device,
|
17 |
)
|
18 |
|
|
|
|
|
|
|
19 |
|
20 |
def generate_blog_post(query):
|
|
|
21 |
print("Generating article.")
|
22 |
article = text_generator(query, max_length=500, num_return_sequences=1)[0][
|
23 |
"generated_text"
|
24 |
]
|
25 |
print(f"{article = }")
|
26 |
|
|
|
27 |
print("Generating the title.")
|
28 |
title = title_generator(article, max_length=30, num_return_sequences=1)[0][
|
29 |
"generated_text"
|
30 |
]
|
31 |
print(f"{title = }")
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
print("Generating the summary.")
|
34 |
summary = summarizer(article, max_length=100, min_length=30, do_sample=False)[0][
|
35 |
"summary_text"
|
36 |
]
|
37 |
print(f"{summary = }")
|
38 |
|
39 |
+
return title, summary, article
|
40 |
|
41 |
|
42 |
with gr.Blocks() as iface:
|
|
|
56 |
article_output = gr.Textbox(label="Article", lines=10)
|
57 |
|
58 |
with gr.Column(scale=1):
|
|
|
59 |
summary_output = gr.Textbox(label="Summary", lines=5)
|
60 |
|
61 |
generate_button.click(
|
62 |
generate_blog_post,
|
63 |
inputs=topic_input,
|
64 |
+
outputs=[title_output, summary_output, article_output],
|
65 |
)
|
66 |
|
67 |
iface.launch()
|