cover generator removed
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: π
|
4 |
colorFrom: blue
|
5 |
colorTo: green
|
|
|
1 |
---
|
2 |
+
title: Blog Post Generator
|
3 |
emoji: π
|
4 |
colorFrom: blue
|
5 |
colorTo: green
|
app.py
CHANGED
@@ -1,66 +1,81 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import pipeline
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
ARTICLE_GENERATOR_MODEL = "gpt2"
|
7 |
SUMMARIZER_MODEL = "Falconsai/text_summarization"
|
8 |
TITLE_GENERATOR_MODEL = "czearing/article-title-generator"
|
9 |
-
IMAGE_GENERATOR_MODEL = "prompthero/openjourney-v4"
|
10 |
|
11 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
-
|
13 |
|
|
|
14 |
text_generator = pipeline(
|
15 |
"text-generation", model=ARTICLE_GENERATOR_MODEL, device=DEVICE
|
16 |
)
|
17 |
summarizer = pipeline("summarization", model=SUMMARIZER_MODEL, device=DEVICE)
|
18 |
title_generator = pipeline(
|
19 |
-
"text2text-generation",
|
20 |
-
model=TITLE_GENERATOR_MODEL,
|
21 |
-
device=DEVICE,
|
22 |
)
|
23 |
-
|
24 |
-
IMAGE_GENERATOR_MODEL,
|
25 |
-
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
|
26 |
-
)
|
27 |
-
image_generator = image_generator.to(DEVICE)
|
28 |
|
29 |
|
30 |
-
def
|
31 |
-
|
32 |
-
article = text_generator(
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
print("Generating the title.")
|
38 |
-
title = title_generator(article, max_length=title_length, num_return_sequences=1)[
|
39 |
-
0
|
40 |
-
]["generated_text"]
|
41 |
-
print(f"{title = }")
|
42 |
|
43 |
-
|
|
|
44 |
summary = summarizer(
|
45 |
article,
|
46 |
-
max_length=summary_length,
|
47 |
-
min_length=min(30, summary_length),
|
48 |
do_sample=False,
|
49 |
-
)[
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
summary, num_inference_steps=40, guidance_scale=7.5, width=512, height=512
|
55 |
-
).images[0]
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
with gr.Blocks() as iface:
|
61 |
gr.Markdown("# Blog Post Generator")
|
62 |
gr.Markdown(
|
63 |
-
"Enter a topic, and I'll generate a blog post with a title
|
64 |
)
|
65 |
|
66 |
with gr.Row():
|
@@ -69,56 +84,44 @@ with gr.Blocks() as iface:
|
|
69 |
with gr.Row():
|
70 |
generate_button = gr.Button("Generate Blog Post", size="sm")
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
with gr.Row():
|
73 |
with gr.Column(scale=2):
|
74 |
with gr.Blocks() as title_block:
|
75 |
gr.Markdown("## Title")
|
76 |
-
|
77 |
-
with gr.Accordion("Options", open=False):
|
78 |
-
title_length = gr.Slider(
|
79 |
-
minimum=10, maximum=50, value=30, step=5, label="Title Length"
|
80 |
-
)
|
81 |
title_output = gr.Textbox(label="Title")
|
82 |
|
83 |
with gr.Blocks() as body_block:
|
84 |
gr.Markdown("## Body")
|
85 |
-
|
86 |
with gr.Accordion("Options", open=False):
|
87 |
-
|
88 |
-
minimum=
|
89 |
-
maximum=
|
90 |
value=500,
|
91 |
-
step=
|
92 |
-
label="
|
93 |
)
|
94 |
-
article_output = gr.Textbox(label="Article", lines=10)
|
95 |
|
96 |
with gr.Column(scale=1):
|
97 |
-
with gr.Blocks() as image_block:
|
98 |
-
gr.Markdown("## Cover Image")
|
99 |
-
image_output = gr.Image(label="Cover Image")
|
100 |
-
|
101 |
with gr.Blocks() as summary_block:
|
102 |
gr.Markdown("## Summary")
|
103 |
-
with gr.Accordion("Options", open=False):
|
104 |
-
summary_length = gr.Slider(
|
105 |
-
minimum=30,
|
106 |
-
maximum=200,
|
107 |
-
value=100,
|
108 |
-
step=10,
|
109 |
-
label="Summary Length",
|
110 |
-
)
|
111 |
summary_output = gr.Textbox(label="Summary", lines=5)
|
112 |
|
113 |
-
|
114 |
generate_blog_post,
|
115 |
-
inputs=[
|
116 |
-
|
117 |
-
article_length,
|
118 |
-
title_length,
|
119 |
-
summary_length,
|
120 |
-
],
|
121 |
-
outputs=[title_output, summary_output, article_output, image_output],
|
122 |
)
|
123 |
|
124 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import pipeline
|
4 |
+
import logging
|
5 |
+
|
6 |
+
# Set up logging
|
7 |
+
logging.basicConfig(
|
8 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
9 |
+
)
|
10 |
|
11 |
ARTICLE_GENERATOR_MODEL = "gpt2"
|
12 |
SUMMARIZER_MODEL = "Falconsai/text_summarization"
|
13 |
TITLE_GENERATOR_MODEL = "czearing/article-title-generator"
|
|
|
14 |
|
15 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
logging.info(f"Using device: {DEVICE}")
|
17 |
|
18 |
+
logging.info("Initializing models...")
|
19 |
text_generator = pipeline(
|
20 |
"text-generation", model=ARTICLE_GENERATOR_MODEL, device=DEVICE
|
21 |
)
|
22 |
summarizer = pipeline("summarization", model=SUMMARIZER_MODEL, device=DEVICE)
|
23 |
title_generator = pipeline(
|
24 |
+
"text2text-generation", model=TITLE_GENERATOR_MODEL, device=DEVICE
|
|
|
|
|
25 |
)
|
26 |
+
logging.info("Models initialized successfully")
|
|
|
|
|
|
|
|
|
27 |
|
28 |
|
29 |
+
def generate_article(query, max_new_tokens):
|
30 |
+
logging.info(f"Generating article for query: {query}")
|
31 |
+
article = text_generator(
|
32 |
+
query,
|
33 |
+
max_new_tokens=max_new_tokens,
|
34 |
+
num_return_sequences=1,
|
35 |
+
)[0]["generated_text"]
|
36 |
+
logging.debug(f"Generated article: {article[:100]}...")
|
37 |
+
return article
|
38 |
+
|
39 |
+
|
40 |
+
def generate_title(article):
|
41 |
+
logging.info("Generating title")
|
42 |
+
title = title_generator(article, num_return_sequences=1)[0]["generated_text"]
|
43 |
+
logging.debug(f"Generated title: {title}")
|
44 |
+
return title
|
45 |
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
def generate_summary(article):
|
48 |
+
logging.info("Generating summary")
|
49 |
summary = summarizer(
|
50 |
article,
|
|
|
|
|
51 |
do_sample=False,
|
52 |
+
)[
|
53 |
+
0
|
54 |
+
]["summary_text"]
|
55 |
+
logging.debug(f"Generated summary: {summary}")
|
56 |
+
return summary
|
57 |
+
|
58 |
+
|
59 |
+
def generate_blog_post(query, max_new_tokens):
|
60 |
+
logging.info("Starting blog post generation")
|
61 |
|
62 |
+
logging.info("Generating article")
|
63 |
+
article = generate_article(query, max_new_tokens)
|
|
|
|
|
64 |
|
65 |
+
logging.info("Generating title")
|
66 |
+
title = generate_title(article)
|
67 |
+
|
68 |
+
logging.info("Generating summary")
|
69 |
+
summary = generate_summary(article)
|
70 |
+
|
71 |
+
logging.info("Blog post generation completed")
|
72 |
+
return title, summary, article
|
73 |
|
74 |
|
75 |
with gr.Blocks() as iface:
|
76 |
gr.Markdown("# Blog Post Generator")
|
77 |
gr.Markdown(
|
78 |
+
"Enter a topic, and I'll generate a blog post with a title and summary!"
|
79 |
)
|
80 |
|
81 |
with gr.Row():
|
|
|
84 |
with gr.Row():
|
85 |
generate_button = gr.Button("Generate Blog Post", size="sm")
|
86 |
|
87 |
+
gr.Examples(
|
88 |
+
examples=[
|
89 |
+
"The future of artificial intelligence in healthcare",
|
90 |
+
"Top 10 travel destinations for nature lovers",
|
91 |
+
"How to start a successful online business in 2024",
|
92 |
+
"The impact of climate change on global food security",
|
93 |
+
],
|
94 |
+
inputs=input_prompt,
|
95 |
+
)
|
96 |
+
|
97 |
with gr.Row():
|
98 |
with gr.Column(scale=2):
|
99 |
with gr.Blocks() as title_block:
|
100 |
gr.Markdown("## Title")
|
|
|
|
|
|
|
|
|
|
|
101 |
title_output = gr.Textbox(label="Title")
|
102 |
|
103 |
with gr.Blocks() as body_block:
|
104 |
gr.Markdown("## Body")
|
105 |
+
article_output = gr.Textbox(label="Article", lines=30)
|
106 |
with gr.Accordion("Options", open=False):
|
107 |
+
max_new_tokens = gr.Slider(
|
108 |
+
minimum=20,
|
109 |
+
maximum=500,
|
110 |
value=500,
|
111 |
+
step=10,
|
112 |
+
label="Max New Tokens",
|
113 |
)
|
|
|
114 |
|
115 |
with gr.Column(scale=1):
|
|
|
|
|
|
|
|
|
116 |
with gr.Blocks() as summary_block:
|
117 |
gr.Markdown("## Summary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
summary_output = gr.Textbox(label="Summary", lines=5)
|
119 |
|
120 |
+
generate_button.click(
|
121 |
generate_blog_post,
|
122 |
+
inputs=[input_prompt, max_new_tokens],
|
123 |
+
outputs=[title_output, summary_output, article_output],
|
|
|
|
|
|
|
|
|
|
|
124 |
)
|
125 |
|
126 |
+
logging.info("Launching Gradio interface")
|
127 |
+
iface.queue().launch()
|