LegSum / Summarizer /Extractive.py
d0r1h's picture
Update Summarizer/Extractive.py
38e9364
raw
history blame
1.75 kB
import nltk
from summarizer import Summarizer
from sumy.nlp.tokenizers import Tokenizer
from sumy.summarizers.lsa import LsaSummarizer
from sumy.parsers.plaintext import PlaintextParser
from sumy.summarizers.lex_rank import LexRankSummarizer
from sumy.summarizers.sum_basic import SumBasicSummarizer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
nltk.download('punkt')
def extractive(method, file):
sumarizer = method
sentences_ = []
doc_ = PlaintextParser(file, Tokenizer("en")).document
for sentence in sumarizer(doc_, 5):
sentences_.append(str(sentence))
summm_ = " ".join(sentences_)
return summm_
def summarize(file, model):
with open(file.name) as f:
doc = f.read()
if model == "Pegasus":
checkpoint = "google/pegasus-billsum"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
inputs = tokenizer(doc,
max_length=1024,
truncation=True,
return_tensors="pt")
summary_ids = model.generate(inputs["input_ids"])
summary = tokenizer.batch_decode(summary_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False)
summary = summary[0]
elif model == "TextRank":
summary = extractive(LexRankSummarizer(), doc)
elif model == "SumBasic":
summary = extractive(SumBasicSummarizer(), doc)
elif model == "Lsa":
summary = extractive(LsaSummarizer(), doc)
elif model == "BERT":
modelbert = Summarizer('distilbert-base-uncased', hidden=[-1,-2], hidden_concat=True)
result = modelbert(doc)
summary = ''.join(result)
return summary