Update Summarizer/Extractive.py
Browse files- Summarizer/Extractive.py +46 -12
Summarizer/Extractive.py
CHANGED
@@ -1,21 +1,55 @@
|
|
1 |
import nltk
|
2 |
-
from
|
3 |
-
from sumy.summarizers.luhn import LuhnSummarizer
|
4 |
from sumy.nlp.tokenizers import Tokenizer
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
nltk.download('punkt')
|
7 |
|
8 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
for sentence in sumarizer(doc_, SENTENCES_COUNT):
|
17 |
-
sentences_.append(str(sentence))
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
1 |
import nltk
|
2 |
+
from summarizer import Summarizer
|
|
|
3 |
from sumy.nlp.tokenizers import Tokenizer
|
4 |
+
from sumy.summarizers.lsa import LsaSummarizer
|
5 |
+
from sumy.parsers.plaintext import PlaintextParser
|
6 |
+
from sumy.summarizers.lex_rank import LexRankSummarizer
|
7 |
+
from sumy.summarizers.sum_basic import SumBasicSummarizer
|
8 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
9 |
|
10 |
nltk.download('punkt')
|
11 |
|
12 |
+
def extractive(method, file):
|
13 |
+
sumarizer = method
|
14 |
+
sentences_ = []
|
15 |
+
doc_ = PlaintextParser(file, Tokenizer("en")).document
|
16 |
+
for sentence in sumarizer(doc_, 5):
|
17 |
+
sentences_.append(str(sentence))
|
18 |
+
summm_ = " ".join(sentences_)
|
19 |
+
return summm_
|
20 |
+
|
21 |
+
def summarize(file, model):
|
22 |
+
|
23 |
+
with open(file.name) as f:
|
24 |
+
doc = f.read()
|
25 |
|
26 |
+
if model == "Pegasus":
|
27 |
+
checkpoint = "google/pegasus-billsum"
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
29 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
30 |
+
inputs = tokenizer(doc,
|
31 |
+
max_length=1024,
|
32 |
+
truncation=True,
|
33 |
+
return_tensors="pt")
|
34 |
+
|
35 |
+
summary_ids = model.generate(inputs["input_ids"])
|
36 |
+
summary = tokenizer.batch_decode(summary_ids,
|
37 |
+
skip_special_tokens=True,
|
38 |
+
clean_up_tokenization_spaces=False)
|
39 |
+
summary = summary[0]
|
40 |
|
41 |
+
elif model == "TextRank":
|
42 |
+
summary = extractive(LexRankSummarizer(), doc)
|
|
|
|
|
43 |
|
44 |
+
elif model == "SumBasic":
|
45 |
+
summary = extractive(SumBasicSummarizer(), doc)
|
46 |
+
|
47 |
+
elif model == "Lsa":
|
48 |
+
summary = extractive(LsaSummarizer(), doc)
|
49 |
+
|
50 |
+
elif model == "BERT":
|
51 |
+
modelbert = Summarizer('distilbert-base-uncased', hidden=[-1,-2], hidden_concat=True)
|
52 |
+
result = modelbert(doc)
|
53 |
+
summary = ''.join(result)
|
54 |
|
55 |
+
return summary
|