Spaces:
Sleeping
Sleeping
import gradio as gr | |
# Importing the required libraries | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load model directly | |
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0") | |
model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0") | |
# System message | |
system_message = ''' | |
I am a code teaching assistant named as OmniCode created | |
by Anusha K. I will answer all the code related questions being asked." | |
''' | |
def generate_response(prompt, max_length=1000, temperature=1.0): | |
input_text = system_message + "\n" + prompt | |
input_ids = tokenizer.encode(input_text, return_tensors='pt') | |
# Generate response | |
output = model.generate(input_ids, | |
max_length=max_length, | |
temperature=temperature, | |
pad_token_id=tokenizer.eos_token_id, | |
num_return_sequences=1) | |
# Decode and return the response | |
response = tokenizer.decode(output[0], skip_special_tokens=True) | |
return response | |
# Create Gradio interface | |
def chat_with_omnicode(prompt): | |
response = generate_response(prompt, max_length=1000) # Adjust max_length as needed | |
return response | |
iface = gr.Interface(fn=chat_with_omnicode, inputs="text", outputs="text", title="OmniCode") | |
iface.launch() | |