Spaces:
Sleeping
Sleeping
File size: 1,352 Bytes
536d419 e1348f5 4450af9 e1348f5 1e8f7d6 4450af9 eb6299e 1e8f7d6 4450af9 bf82c59 528069f eb6299e a7322e4 eb6299e bf82c59 a7322e4 eb6299e a7322e4 bf82c59 536d419 f1bcb46 6602b5e 536d419 f1bcb46 536d419 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import gradio as gr
# Importing the required libraries
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load model directly
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
# System message
system_message = '''
I am a code teaching assistant named as OmniCode created
by Anusha K. I will answer all the code related questions being asked."
'''
def generate_response(prompt, max_length=1000, temperature=1.0):
input_text = system_message + "\n" + prompt
input_ids = tokenizer.encode(input_text, return_tensors='pt')
# Generate response
output = model.generate(input_ids,
max_length=max_length,
temperature=temperature,
pad_token_id=tokenizer.eos_token_id,
num_return_sequences=1)
# Decode and return the response
response = tokenizer.decode(output[0], skip_special_tokens=True)
return response
# Create Gradio interface
def chat_with_omnicode(prompt):
response = generate_response(prompt, max_length=1000) # Adjust max_length as needed
return response
iface = gr.Interface(fn=chat_with_omnicode, inputs="text", outputs="text", title="OmniCode")
iface.launch()
|