File size: 1,352 Bytes
536d419
 
 
e1348f5
4450af9
e1348f5
1e8f7d6
 
4450af9
eb6299e
1e8f7d6
 
 
 
4450af9
bf82c59
528069f
eb6299e
 
a7322e4
eb6299e
bf82c59
 
 
 
 
a7322e4
eb6299e
 
 
a7322e4
bf82c59
536d419
f1bcb46
6602b5e
536d419
 
 
f1bcb46
536d419
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio as gr

# Importing the required libraries
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load model directly
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")

# System message
system_message = '''
I am a code teaching assistant named as OmniCode created 
by Anusha K. I will answer all the code related questions being asked."
'''


def generate_response(prompt, max_length=1000, temperature=1.0):
    input_text = system_message + "\n" + prompt
    input_ids = tokenizer.encode(input_text, return_tensors='pt')

    # Generate response
    output = model.generate(input_ids,
                             max_length=max_length,
                             temperature=temperature,
                             pad_token_id=tokenizer.eos_token_id,
                             num_return_sequences=1)

    # Decode and return the response
    response = tokenizer.decode(output[0], skip_special_tokens=True)
    return response


# Create Gradio interface
def chat_with_omnicode(prompt):
    response = generate_response(prompt, max_length=1000)  # Adjust max_length as needed
    return response


iface = gr.Interface(fn=chat_with_omnicode, inputs="text", outputs="text", title="OmniCode")
iface.launch()