import gradio as gr | |
from transformers import pipeline | |
# Cargar el modelo de transcripci贸n Whisper | |
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-small") | |
# Funci贸n para transcribir audio | |
def transcribe(audio): | |
result = transcriber(audio) | |
return result["text"] | |
# Crear interfaz Gradio | |
demo = gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs="text", | |
title="Transcripci贸n de Audio en Vivo", | |
description="Sube un archivo de audio para transcribir su contenido autom谩ticamente." | |
) | |
# Lanzar la aplicaci贸n | |
if __name__ == "__main__": | |
demo.launch() |