Spaces:
Build error
Build error
Commit
·
1a48f25
1
Parent(s):
796ae95
Update app.py
Browse files
app.py
CHANGED
@@ -60,92 +60,177 @@ def _generate(mode, context, hint=None, minLength=50, maxLength=500, lengthPenal
|
|
60 |
|
61 |
if mode == 'Auto':
|
62 |
_inputText = "question_context: " + context
|
63 |
-
if model == "All":
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
_encoding = _tk1.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024
|
83 |
-
_outputEncoded = _m1.generate(_encoding,
|
84 |
-
min_length=minLength,
|
85 |
-
max_length=maxLength,
|
86 |
-
length_penalty=lengthPenalty,
|
87 |
-
early_stopping=earlyStopping,
|
88 |
-
num_return_sequences=numReturnSequences,
|
89 |
-
num_beams=numBeams,
|
90 |
-
no_repeat_ngram_size=noRepeatNGramSize,
|
91 |
-
do_sample=doSample,
|
92 |
-
top_k=topK,
|
93 |
-
penalty_alpha=penaltyAlpha,
|
94 |
-
top_p=topP,
|
95 |
-
temperature=temperature
|
96 |
-
)
|
97 |
-
predictionM1 = [_tk1.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
elif mode == 'Hints':
|
150 |
_inputText = "question_hint: " + hint + "</s>question_context: " + context
|
151 |
|
@@ -232,7 +317,7 @@ with gr.Blocks() as demo:
|
|
232 |
with gr.Row(variant='compact'):
|
233 |
_predictionM2 = gr.Textbox(label="Predicted Questions - question-generation-auto-t5-v1-base-s-q-c [No Hints]")
|
234 |
_predictionM1 = gr.Textbox(label="Predicted Questions - question-generation-auto-t5-v1-base-s-q [No Hints]")
|
235 |
-
_predictionM0 = gr.Textbox(label="Predicted Questions - question-generation-auto-t5-v1-base-s
|
236 |
|
237 |
with gr.Row():
|
238 |
gen_btn = gr.Button("Generate Questions")
|
|
|
60 |
|
61 |
if mode == 'Auto':
|
62 |
_inputText = "question_context: " + context
|
|
|
63 |
|
64 |
+
if model == "All":
|
65 |
+
_encoding = _tk0.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024
|
66 |
+
_outputEncoded = _m0.generate(_encoding,
|
67 |
+
min_length=minLength,
|
68 |
+
max_length=maxLength,
|
69 |
+
length_penalty=lengthPenalty,
|
70 |
+
early_stopping=earlyStopping,
|
71 |
+
num_return_sequences=numReturnSequences,
|
72 |
+
num_beams=numBeams,
|
73 |
+
no_repeat_ngram_size=noRepeatNGramSize,
|
74 |
+
do_sample=doSample,
|
75 |
+
top_k=topK,
|
76 |
+
penalty_alpha=penaltyAlpha,
|
77 |
+
top_p=topP,
|
78 |
+
temperature=temperature
|
79 |
+
)
|
80 |
+
predictionM0 = [_tk0.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
_encoding = _tk1.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024
|
83 |
+
_outputEncoded = _m1.generate(_encoding,
|
84 |
+
min_length=minLength,
|
85 |
+
max_length=maxLength,
|
86 |
+
length_penalty=lengthPenalty,
|
87 |
+
early_stopping=earlyStopping,
|
88 |
+
num_return_sequences=numReturnSequences,
|
89 |
+
num_beams=numBeams,
|
90 |
+
no_repeat_ngram_size=noRepeatNGramSize,
|
91 |
+
do_sample=doSample,
|
92 |
+
top_k=topK,
|
93 |
+
penalty_alpha=penaltyAlpha,
|
94 |
+
top_p=topP,
|
95 |
+
temperature=temperature
|
96 |
+
)
|
97 |
+
predictionM1 = [_tk1.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
|
98 |
+
|
99 |
+
_encoding = _tk2.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024 .to(device)
|
100 |
+
_outputEncoded = _m2.generate(_encoding,
|
101 |
+
min_length=minLength,
|
102 |
+
max_length=maxLength,
|
103 |
+
length_penalty=lengthPenalty,
|
104 |
+
early_stopping=earlyStopping,
|
105 |
+
num_return_sequences=numReturnSequences,
|
106 |
+
num_beams=numBeams,
|
107 |
+
no_repeat_ngram_size=noRepeatNGramSize,
|
108 |
+
do_sample=doSample,
|
109 |
+
top_k=topK,
|
110 |
+
penalty_alpha=penaltyAlpha,
|
111 |
+
top_p=topP,
|
112 |
+
temperature=temperature
|
113 |
+
)
|
114 |
+
predictionM2 = [_tk2.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
|
115 |
+
|
116 |
+
_encoding = _tk4.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024 .to(device)
|
117 |
+
_outputEncoded = _m4.generate(_encoding,
|
118 |
+
min_length=minLength,
|
119 |
+
max_length=maxLength,
|
120 |
+
length_penalty=lengthPenalty,
|
121 |
+
early_stopping=earlyStopping,
|
122 |
+
num_return_sequences=numReturnSequences,
|
123 |
+
num_beams=numBeams,
|
124 |
+
no_repeat_ngram_size=noRepeatNGramSize,
|
125 |
+
do_sample=doSample,
|
126 |
+
top_k=topK,
|
127 |
+
penalty_alpha=penaltyAlpha,
|
128 |
+
top_p=topP,
|
129 |
+
temperature=temperature
|
130 |
+
)
|
131 |
+
predictionM4 = [_tk4.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
|
132 |
+
|
133 |
+
_encoding = _tk5.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024 .to(device)
|
134 |
+
_outputEncoded = _m5.generate(_encoding,
|
135 |
+
min_length=minLength,
|
136 |
+
max_length=maxLength,
|
137 |
+
length_penalty=lengthPenalty,
|
138 |
+
early_stopping=earlyStopping,
|
139 |
+
num_return_sequences=numReturnSequences,
|
140 |
+
num_beams=numBeams,
|
141 |
+
no_repeat_ngram_size=noRepeatNGramSize,
|
142 |
+
do_sample=doSample,
|
143 |
+
top_k=topK,
|
144 |
+
penalty_alpha=penaltyAlpha,
|
145 |
+
top_p=topP,
|
146 |
+
temperature=temperature
|
147 |
+
)
|
148 |
+
predictionM5 = [_tk5.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
|
149 |
+
elif model == "question-generation-auto-hints-t5-v1-base-s-q-c":
|
150 |
+
_encoding = _tk5.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024 .to(device)
|
151 |
+
_outputEncoded = _m5.generate(_encoding,
|
152 |
+
min_length=minLength,
|
153 |
+
max_length=maxLength,
|
154 |
+
length_penalty=lengthPenalty,
|
155 |
+
early_stopping=earlyStopping,
|
156 |
+
num_return_sequences=numReturnSequences,
|
157 |
+
num_beams=numBeams,
|
158 |
+
no_repeat_ngram_size=noRepeatNGramSize,
|
159 |
+
do_sample=doSample,
|
160 |
+
top_k=topK,
|
161 |
+
penalty_alpha=penaltyAlpha,
|
162 |
+
top_p=topP,
|
163 |
+
temperature=temperature
|
164 |
+
)
|
165 |
+
predictionM5 = [_tk5.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
|
166 |
+
elif model == "question-generation-auto-hints-t5-v1-base-s-q":
|
167 |
+
_encoding = _tk4.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024 .to(device)
|
168 |
+
_outputEncoded = _m4.generate(_encoding,
|
169 |
+
min_length=minLength,
|
170 |
+
max_length=maxLength,
|
171 |
+
length_penalty=lengthPenalty,
|
172 |
+
early_stopping=earlyStopping,
|
173 |
+
num_return_sequences=numReturnSequences,
|
174 |
+
num_beams=numBeams,
|
175 |
+
no_repeat_ngram_size=noRepeatNGramSize,
|
176 |
+
do_sample=doSample,
|
177 |
+
top_k=topK,
|
178 |
+
penalty_alpha=penaltyAlpha,
|
179 |
+
top_p=topP,
|
180 |
+
temperature=temperature
|
181 |
+
)
|
182 |
+
predictionM4 = [_tk4.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
|
183 |
+
elif model == "question-generation-auto-t5-v1-base-s-q-c":
|
184 |
+
_encoding = _tk2.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024 .to(device)
|
185 |
+
_outputEncoded = _m2.generate(_encoding,
|
186 |
+
min_length=minLength,
|
187 |
+
max_length=maxLength,
|
188 |
+
length_penalty=lengthPenalty,
|
189 |
+
early_stopping=earlyStopping,
|
190 |
+
num_return_sequences=numReturnSequences,
|
191 |
+
num_beams=numBeams,
|
192 |
+
no_repeat_ngram_size=noRepeatNGramSize,
|
193 |
+
do_sample=doSample,
|
194 |
+
top_k=topK,
|
195 |
+
penalty_alpha=penaltyAlpha,
|
196 |
+
top_p=topP,
|
197 |
+
temperature=temperature
|
198 |
+
)
|
199 |
+
predictionM2 = [_tk2.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
|
200 |
+
elif model == "question-generation-auto-t5-v1-base-s-q":
|
201 |
+
_encoding = _tk1.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024
|
202 |
+
_outputEncoded = _m1.generate(_encoding,
|
203 |
+
min_length=minLength,
|
204 |
+
max_length=maxLength,
|
205 |
+
length_penalty=lengthPenalty,
|
206 |
+
early_stopping=earlyStopping,
|
207 |
+
num_return_sequences=numReturnSequences,
|
208 |
+
num_beams=numBeams,
|
209 |
+
no_repeat_ngram_size=noRepeatNGramSize,
|
210 |
+
do_sample=doSample,
|
211 |
+
top_k=topK,
|
212 |
+
penalty_alpha=penaltyAlpha,
|
213 |
+
top_p=topP,
|
214 |
+
temperature=temperature
|
215 |
+
)
|
216 |
+
predictionM1 = [_tk1.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
|
217 |
+
elif model == "question-generation-auto-t5-v1-base-s":
|
218 |
+
_encoding = _tk0.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024
|
219 |
+
_outputEncoded = _m0.generate(_encoding,
|
220 |
+
min_length=minLength,
|
221 |
+
max_length=maxLength,
|
222 |
+
length_penalty=lengthPenalty,
|
223 |
+
early_stopping=earlyStopping,
|
224 |
+
num_return_sequences=numReturnSequences,
|
225 |
+
num_beams=numBeams,
|
226 |
+
no_repeat_ngram_size=noRepeatNGramSize,
|
227 |
+
do_sample=doSample,
|
228 |
+
top_k=topK,
|
229 |
+
penalty_alpha=penaltyAlpha,
|
230 |
+
top_p=topP,
|
231 |
+
temperature=temperature
|
232 |
+
)
|
233 |
+
predictionM0 = [_tk0.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
|
234 |
elif mode == 'Hints':
|
235 |
_inputText = "question_hint: " + hint + "</s>question_context: " + context
|
236 |
|
|
|
317 |
with gr.Row(variant='compact'):
|
318 |
_predictionM2 = gr.Textbox(label="Predicted Questions - question-generation-auto-t5-v1-base-s-q-c [No Hints]")
|
319 |
_predictionM1 = gr.Textbox(label="Predicted Questions - question-generation-auto-t5-v1-base-s-q [No Hints]")
|
320 |
+
_predictionM0 = gr.Textbox(label="Predicted Questions - question-generation-auto-t5-v1-base-s [No Hints]")
|
321 |
|
322 |
with gr.Row():
|
323 |
gen_btn = gr.Button("Generate Questions")
|