Spaces:
Build error
Build error
Commit
·
796ae95
1
Parent(s):
594c919
Update app.py
Browse files
app.py
CHANGED
@@ -6,12 +6,12 @@ from transformers import (
|
|
6 |
AutoTokenizer
|
7 |
)
|
8 |
|
9 |
-
M0 = "
|
10 |
-
M1 = "
|
11 |
-
M2 = "
|
12 |
|
13 |
-
M4 = "
|
14 |
-
M5 = "
|
15 |
|
16 |
device = ['cuda' if torch.cuda.is_available() else 'cpu'][0]
|
17 |
|
@@ -50,7 +50,7 @@ def _formatQs(questions):
|
|
50 |
_finalQs = None
|
51 |
return _finalQs
|
52 |
|
53 |
-
def _generate(mode, context, hint=None, minLength=50, maxLength=500, lengthPenalty=2.0, earlyStopping=True, numReturnSequences=1, numBeams=2, noRepeatNGramSize=0, doSample=False, topK=0, topP=0, temperature=0):
|
54 |
|
55 |
predictionM0 = None
|
56 |
predictionM1 = None
|
@@ -60,7 +60,8 @@ def _generate(mode, context, hint=None, minLength=50, maxLength=500, lengthPenal
|
|
60 |
|
61 |
if mode == 'Auto':
|
62 |
_inputText = "question_context: " + context
|
63 |
-
|
|
|
64 |
_encoding = _tk0.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024
|
65 |
_outputEncoded = _m0.generate(_encoding,
|
66 |
min_length=minLength,
|
@@ -72,6 +73,7 @@ def _generate(mode, context, hint=None, minLength=50, maxLength=500, lengthPenal
|
|
72 |
no_repeat_ngram_size=noRepeatNGramSize,
|
73 |
do_sample=doSample,
|
74 |
top_k=topK,
|
|
|
75 |
top_p=topP,
|
76 |
temperature=temperature
|
77 |
)
|
@@ -88,6 +90,7 @@ def _generate(mode, context, hint=None, minLength=50, maxLength=500, lengthPenal
|
|
88 |
no_repeat_ngram_size=noRepeatNGramSize,
|
89 |
do_sample=doSample,
|
90 |
top_k=topK,
|
|
|
91 |
top_p=topP,
|
92 |
temperature=temperature
|
93 |
)
|
@@ -104,6 +107,7 @@ def _generate(mode, context, hint=None, minLength=50, maxLength=500, lengthPenal
|
|
104 |
no_repeat_ngram_size=noRepeatNGramSize,
|
105 |
do_sample=doSample,
|
106 |
top_k=topK,
|
|
|
107 |
top_p=topP,
|
108 |
temperature=temperature
|
109 |
)
|
@@ -120,6 +124,7 @@ def _generate(mode, context, hint=None, minLength=50, maxLength=500, lengthPenal
|
|
120 |
no_repeat_ngram_size=noRepeatNGramSize,
|
121 |
do_sample=doSample,
|
122 |
top_k=topK,
|
|
|
123 |
top_p=topP,
|
124 |
temperature=temperature
|
125 |
)
|
@@ -136,6 +141,7 @@ def _generate(mode, context, hint=None, minLength=50, maxLength=500, lengthPenal
|
|
136 |
no_repeat_ngram_size=noRepeatNGramSize,
|
137 |
do_sample=doSample,
|
138 |
top_k=topK,
|
|
|
139 |
top_p=topP,
|
140 |
temperature=temperature
|
141 |
)
|
@@ -154,6 +160,7 @@ def _generate(mode, context, hint=None, minLength=50, maxLength=500, lengthPenal
|
|
154 |
no_repeat_ngram_size=noRepeatNGramSize,
|
155 |
do_sample=doSample,
|
156 |
top_k=topK,
|
|
|
157 |
top_p=topP,
|
158 |
temperature=temperature
|
159 |
)
|
@@ -170,6 +177,7 @@ def _generate(mode, context, hint=None, minLength=50, maxLength=500, lengthPenal
|
|
170 |
no_repeat_ngram_size=noRepeatNGramSize,
|
171 |
do_sample=doSample,
|
172 |
top_k=topK,
|
|
|
173 |
top_p=topP,
|
174 |
temperature=temperature
|
175 |
)
|
@@ -186,7 +194,7 @@ def _generate(mode, context, hint=None, minLength=50, maxLength=500, lengthPenal
|
|
186 |
with gr.Blocks() as demo:
|
187 |
gr.Markdown(value="# Question Generation Demo \n [question-generation-auto-t5-v1-base-s](https://huggingface.co/anshoomehra/question-generation-auto-t5-v1-base-s) ✫ [question-generation-auto-t5-v1-base-s-q](https://huggingface.co/anshoomehra/question-generation-auto-t5-v1-base-s-q) ✫ [question-generation-auto-t5-v1-base-s-q-c](https://huggingface.co/anshoomehra/question-generation-auto-t5-v1-base-s-q-c) ✫ [question-generation-auto-hints-t5-v1-base-s-q](https://huggingface.co/anshoomehra/question-generation-auto-hints-t5-v1-base-s-q) ✫ [question-generation-auto-hints-t5-v1-base-s-q-c](https://huggingface.co/anshoomehra/question-generation-auto-hints-t5-v1-base-s-q-c)\n\n Please be patient, 5 models may take up to 80 sec to run on CPU")
|
188 |
|
189 |
-
with gr.Accordion(variant='compact', label='
|
190 |
with gr.Row():
|
191 |
mode = gr.Radio(["Auto", "Hints"], value="Auto", label="Mode")
|
192 |
with gr.Row():
|
@@ -201,8 +209,12 @@ with gr.Blocks() as demo:
|
|
201 |
with gr.Row():
|
202 |
doSample = gr.Checkbox(label="Do Random Sample")
|
203 |
topK = gr.Slider(0, 50, 0, step=1, label="Top K")
|
|
|
204 |
topP = gr.Slider(0, 1, 0, label="Top P/Nucleus Sampling")
|
205 |
temperature = gr.Slider(0.01, 1, 1, label="Temperature")
|
|
|
|
|
|
|
206 |
|
207 |
with gr.Accordion(variant='compact', label='Input Values'):
|
208 |
with gr.Row(variant='compact'):
|
@@ -225,7 +237,7 @@ with gr.Blocks() as demo:
|
|
225 |
with gr.Row():
|
226 |
gen_btn = gr.Button("Generate Questions")
|
227 |
gen_btn.click(fn=_generate,
|
228 |
-
inputs=[mode, context, hint, minLength, maxLength, lengthPenalty, earlyStopping, numReturnSequences, numBeams, noRepeatNGramSize, doSample, topK, topP, temperature],
|
229 |
outputs=[_predictionM5, _predictionM4, _predictionM2, _predictionM1, _predictionM0]
|
230 |
)
|
231 |
|
|
|
6 |
AutoTokenizer
|
7 |
)
|
8 |
|
9 |
+
M0 = "consciousAI/question-generation-auto-t5-v1-base-s"
|
10 |
+
M1 = "consciousAI/question-generation-auto-t5-v1-base-s-q"
|
11 |
+
M2 = "consciousAI/question-generation-auto-t5-v1-base-s-q-c"
|
12 |
|
13 |
+
M4 = "consciousAI/question-generation-auto-hints-t5-v1-base-s-q"
|
14 |
+
M5 = "consciousAI/question-generation-auto-hints-t5-v1-base-s-q-c"
|
15 |
|
16 |
device = ['cuda' if torch.cuda.is_available() else 'cpu'][0]
|
17 |
|
|
|
50 |
_finalQs = None
|
51 |
return _finalQs
|
52 |
|
53 |
+
def _generate(mode, context, hint=None, minLength=50, maxLength=500, lengthPenalty=2.0, earlyStopping=True, numReturnSequences=1, numBeams=2, noRepeatNGramSize=0, doSample=False, topK=0, penaltyAlpha=0, topP=0, temperature=0, model="All"):
|
54 |
|
55 |
predictionM0 = None
|
56 |
predictionM1 = None
|
|
|
60 |
|
61 |
if mode == 'Auto':
|
62 |
_inputText = "question_context: " + context
|
63 |
+
if model == "All":
|
64 |
+
|
65 |
_encoding = _tk0.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024
|
66 |
_outputEncoded = _m0.generate(_encoding,
|
67 |
min_length=minLength,
|
|
|
73 |
no_repeat_ngram_size=noRepeatNGramSize,
|
74 |
do_sample=doSample,
|
75 |
top_k=topK,
|
76 |
+
penalty_alpha=penaltyAlpha,
|
77 |
top_p=topP,
|
78 |
temperature=temperature
|
79 |
)
|
|
|
90 |
no_repeat_ngram_size=noRepeatNGramSize,
|
91 |
do_sample=doSample,
|
92 |
top_k=topK,
|
93 |
+
penalty_alpha=penaltyAlpha,
|
94 |
top_p=topP,
|
95 |
temperature=temperature
|
96 |
)
|
|
|
107 |
no_repeat_ngram_size=noRepeatNGramSize,
|
108 |
do_sample=doSample,
|
109 |
top_k=topK,
|
110 |
+
penalty_alpha=penaltyAlpha,
|
111 |
top_p=topP,
|
112 |
temperature=temperature
|
113 |
)
|
|
|
124 |
no_repeat_ngram_size=noRepeatNGramSize,
|
125 |
do_sample=doSample,
|
126 |
top_k=topK,
|
127 |
+
penalty_alpha=penaltyAlpha,
|
128 |
top_p=topP,
|
129 |
temperature=temperature
|
130 |
)
|
|
|
141 |
no_repeat_ngram_size=noRepeatNGramSize,
|
142 |
do_sample=doSample,
|
143 |
top_k=topK,
|
144 |
+
penalty_alpha=penaltyAlpha,
|
145 |
top_p=topP,
|
146 |
temperature=temperature
|
147 |
)
|
|
|
160 |
no_repeat_ngram_size=noRepeatNGramSize,
|
161 |
do_sample=doSample,
|
162 |
top_k=topK,
|
163 |
+
penalty_alpha=penaltyAlpha,
|
164 |
top_p=topP,
|
165 |
temperature=temperature
|
166 |
)
|
|
|
177 |
no_repeat_ngram_size=noRepeatNGramSize,
|
178 |
do_sample=doSample,
|
179 |
top_k=topK,
|
180 |
+
penalty_alpha=penaltyAlpha,
|
181 |
top_p=topP,
|
182 |
temperature=temperature
|
183 |
)
|
|
|
194 |
with gr.Blocks() as demo:
|
195 |
gr.Markdown(value="# Question Generation Demo \n [question-generation-auto-t5-v1-base-s](https://huggingface.co/anshoomehra/question-generation-auto-t5-v1-base-s) ✫ [question-generation-auto-t5-v1-base-s-q](https://huggingface.co/anshoomehra/question-generation-auto-t5-v1-base-s-q) ✫ [question-generation-auto-t5-v1-base-s-q-c](https://huggingface.co/anshoomehra/question-generation-auto-t5-v1-base-s-q-c) ✫ [question-generation-auto-hints-t5-v1-base-s-q](https://huggingface.co/anshoomehra/question-generation-auto-hints-t5-v1-base-s-q) ✫ [question-generation-auto-hints-t5-v1-base-s-q-c](https://huggingface.co/anshoomehra/question-generation-auto-hints-t5-v1-base-s-q-c)\n\n Please be patient, 5 models may take up to 80 sec to run on CPU")
|
196 |
|
197 |
+
with gr.Accordion(variant='compact', label='Search Methods: Deteriminstic / Stochastic / Contrastive', open=True):
|
198 |
with gr.Row():
|
199 |
mode = gr.Radio(["Auto", "Hints"], value="Auto", label="Mode")
|
200 |
with gr.Row():
|
|
|
209 |
with gr.Row():
|
210 |
doSample = gr.Checkbox(label="Do Random Sample")
|
211 |
topK = gr.Slider(0, 50, 0, step=1, label="Top K")
|
212 |
+
penaltyAlpha = gr.Slider(0.0, 1, 0, label="Penalty Alpha")
|
213 |
topP = gr.Slider(0, 1, 0, label="Top P/Nucleus Sampling")
|
214 |
temperature = gr.Slider(0.01, 1, 1, label="Temperature")
|
215 |
+
with gr.Row():
|
216 |
+
model = gr.Dropdown(["question-generation-auto-hints-t5-v1-base-s-q-c", "question-generation-auto-hints-t5-v1-base-s-q", "question-generation-auto-t5-v1-base-s-q-c", "question-generation-auto-t5-v1-base-s-q", "question-generation-auto-t5-v1-base-s", "All"], label="Model")
|
217 |
+
|
218 |
|
219 |
with gr.Accordion(variant='compact', label='Input Values'):
|
220 |
with gr.Row(variant='compact'):
|
|
|
237 |
with gr.Row():
|
238 |
gen_btn = gr.Button("Generate Questions")
|
239 |
gen_btn.click(fn=_generate,
|
240 |
+
inputs=[mode, context, hint, minLength, maxLength, lengthPenalty, earlyStopping, numReturnSequences, numBeams, noRepeatNGramSize, doSample, topK, penaltyAlpha, topP, temperature, model],
|
241 |
outputs=[_predictionM5, _predictionM4, _predictionM2, _predictionM1, _predictionM0]
|
242 |
)
|
243 |
|