Spaces:
Running
Running
tags: | |
- autotrain | |
- summarization | |
language: | |
- en | |
widget: | |
- text: > | |
def preprocess(text: str) -> str: | |
text = str(text) | |
text = text.replace('\\n', ' ') | |
tokenized_text = text.split(' ') | |
preprocessed_text = " ".join([token for token in tokenized_text if token]) | |
return preprocessed_text | |
datasets: | |
- sagard21/autotrain-data-code-explainer | |
co2_eq_emissions: | |
emissions: 5.393079045128973 | |
license: mit | |
pipeline_tag: summarization | |
# Model Trained Using AutoTrain | |
- Problem type: Summarization | |
- Model ID: 2745581349 | |
- CO2 Emissions (in grams): 5.3931 | |
# Model Description | |
This model is an attempt to simplify code understanding by generating line by line explanation of a source code. This model was fine-tuned using the Salesforce/codet5-large model. Currently it is trained on a small subset of Python snippets. | |
# Model Usage | |
```py | |
from transformers import ( | |
AutoModelForSeq2SeqLM, | |
AutoTokenizer, | |
AutoConfig, | |
pipeline, | |
) | |
model_name = "sagard21/python-code-explainer" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, padding=True) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
config = AutoConfig.from_pretrained(model_name) | |
model.eval() | |
pipe = pipeline("summarization", model=model_name, config=config, tokenizer=tokenizer) | |
raw_code = """ | |
def preprocess(text: str) -> str: | |
text = str(text) | |
text = text.replace("\n", " ") | |
tokenized_text = text.split(" ") | |
preprocessed_text = " ".join([token for token in tokenized_text if token]) | |
return preprocessed_text | |
""" | |
print(pipe(raw_code)[0]["summary_text"]) | |
``` | |
## Validation Metrics | |
- Loss: 2.156 | |
- Rouge1: 29.375 | |
- Rouge2: 18.128 | |
- RougeL: 25.445 | |
- RougeLsum: 28.084 | |
- Gen Len: 19.000 | |