import io | |
import random | |
from typing import List, Tuple | |
import aiohttp | |
import panel as pn | |
from PIL import Image | |
from transformers import CLIPModel, CLIPProcessor | |
pn.extension(design="bootstrap", sizing_mode="stretch_width") | |
import panel as pn | |
import pandas as pd | |
import os | |
import datetime | |
import io | |
from google_sheet import fetch_leaderboard | |
from google_drive import upload_to_drive | |
pn.extension() | |
# File upload widget | |
file_input = pn.widgets.FileInput(accept='.zip', multiple=False) | |
# Status message | |
status = pn.pane.Markdown("") | |
# Leaderboard display | |
leaderboard = pn.pane.DataFrame(pd.DataFrame(), width=600) | |
def submit_file(event): | |
if file_input.value is None: | |
status.object = "β οΈ Please upload a .zip file before submitting." | |
return | |
# Save uploaded file | |
timestamp = datetime.datetime.now().isoformat().replace(":", "_") | |
filename = f"{timestamp}_{file_input.filename}" | |
submission_path = os.path.join("submissions", filename) | |
os.makedirs("submissions", exist_ok=True) | |
with open(submission_path, "wb") as f: | |
f.write(file_input.value) | |
try: | |
drive_file_id = upload_to_drive(submission_path, filename) | |
status.object = f"β Uploaded to Google Drive [File ID: {drive_file_id}]" | |
except Exception as e: | |
status.object = f"β Failed to upload to Google Drive: {e}" | |
# Update leaderboard | |
try: | |
df = fetch_leaderboard() | |
if not df.empty: | |
df_sorted = df.sort_values(by="score", ascending=False) | |
leaderboard.object = df_sorted | |
else: | |
leaderboard.object = pd.DataFrame() | |
except Exception as e: | |
status.object += f"\nβ οΈ Could not load leaderboard: {e}" | |
submit_button = pn.widgets.Button(name="Submit", button_type="primary") | |
submit_button.on_click(submit_file) | |
# Layout | |
app = pn.Column( | |
"## π Hackathon Leaderboard", | |
file_input, | |
submit_button, | |
status, | |
"### Leaderboard", | |
leaderboard | |
) | |
app.servable() | |
# ICON_URLS = { | |
# "brand-github": "https://github.com/holoviz/panel", | |
# "brand-twitter": "https://twitter.com/Panel_Org", | |
# "brand-linkedin": "https://www.linkedin.com/company/panel-org", | |
# "message-circle": "https://discourse.holoviz.org/", | |
# "brand-discord": "https://discord.gg/AXRHnJU6sP", | |
# } | |
# async def random_url(_): | |
# pet = random.choice(["cat", "dog"]) | |
# api_url = f"https://api.the{pet}api.com/v1/images/search" | |
# async with aiohttp.ClientSession() as session: | |
# async with session.get(api_url) as resp: | |
# return (await resp.json())[0]["url"] | |
# @pn.cache | |
# def load_processor_model( | |
# processor_name: str, model_name: str | |
# ) -> Tuple[CLIPProcessor, CLIPModel]: | |
# processor = CLIPProcessor.from_pretrained(processor_name) | |
# model = CLIPModel.from_pretrained(model_name) | |
# return processor, model | |
# async def open_image_url(image_url: str) -> Image: | |
# async with aiohttp.ClientSession() as session: | |
# async with session.get(image_url) as resp: | |
# return Image.open(io.BytesIO(await resp.read())) | |
# def get_similarity_scores(class_items: List[str], image: Image) -> List[float]: | |
# processor, model = load_processor_model( | |
# "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32" | |
# ) | |
# inputs = processor( | |
# text=class_items, | |
# images=[image], | |
# return_tensors="pt", # pytorch tensors | |
# ) | |
# outputs = model(**inputs) | |
# logits_per_image = outputs.logits_per_image | |
# class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy() | |
# return class_likelihoods[0] | |
# async def process_inputs(class_names: List[str], image_url: str): | |
# """ | |
# High level function that takes in the user inputs and returns the | |
# classification results as panel objects. | |
# """ | |
# try: | |
# main.disabled = True | |
# if not image_url: | |
# yield "##### β οΈ Provide an image URL" | |
# return | |
# yield "##### β Fetching image and running model..." | |
# try: | |
# pil_img = await open_image_url(image_url) | |
# img = pn.pane.Image(pil_img, height=400, align="center") | |
# except Exception as e: | |
# yield f"##### π Something went wrong, please try a different URL!" | |
# return | |
# class_items = class_names.split(",") | |
# class_likelihoods = get_similarity_scores(class_items, pil_img) | |
# # build the results column | |
# results = pn.Column("##### π Here are the results!", img) | |
# for class_item, class_likelihood in zip(class_items, class_likelihoods): | |
# row_label = pn.widgets.StaticText( | |
# name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center" | |
# ) | |
# row_bar = pn.indicators.Progress( | |
# value=int(class_likelihood * 100), | |
# sizing_mode="stretch_width", | |
# bar_color="secondary", | |
# margin=(0, 10), | |
# design=pn.theme.Material, | |
# ) | |
# results.append(pn.Column(row_label, row_bar)) | |
# yield results | |
# finally: | |
# main.disabled = False | |
# # create widgets | |
# randomize_url = pn.widgets.Button(name="Randomize URL", align="end") | |
# image_url = pn.widgets.TextInput( | |
# name="Image URL to classify", | |
# value=pn.bind(random_url, randomize_url), | |
# ) | |
# class_names = pn.widgets.TextInput( | |
# name="Comma separated class names", | |
# placeholder="Enter possible class names, e.g. cat, dog", | |
# value="cat, dog, parrot", | |
# ) | |
# input_widgets = pn.Column( | |
# "##### π Click randomize or paste a URL to start classifying!", | |
# pn.Row(image_url, randomize_url), | |
# class_names, | |
# ) | |
# # add interactivity | |
# interactive_result = pn.panel( | |
# pn.bind(process_inputs, image_url=image_url, class_names=class_names), | |
# height=600, | |
# ) | |
# # add footer | |
# footer_row = pn.Row(pn.Spacer(), align="center") | |
# for icon, url in ICON_URLS.items(): | |
# href_button = pn.widgets.Button(icon=icon, width=35, height=35) | |
# href_button.js_on_click(code=f"window.open('{url}')") | |
# footer_row.append(href_button) | |
# footer_row.append(pn.Spacer()) | |
# # create dashboard | |
# main = pn.WidgetBox( | |
# input_widgets, | |
# interactive_result, | |
# footer_row, | |
# ) | |
# title = "Panel Demo - Image Classification" | |
# pn.template.BootstrapTemplate( | |
# title=title, | |
# main=main, | |
# main_max_width="min(50%, 698px)", | |
# header_background="#F08080", | |
# ).servable(title=title) | |