File size: 6,596 Bytes
65a4620
9ad433e
 
1d9b43f
9ad433e
 
 
 
1d9b43f
9ad433e
e9d1eee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab2c92a
e9d1eee
1d9b43f
5de6f0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ad433e
5de6f0a
 
 
 
 
 
 
9ad433e
5de6f0a
 
9ad433e
5de6f0a
 
9ad433e
5de6f0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import io
import random
from typing import List, Tuple

import aiohttp
import panel as pn
from PIL import Image
from transformers import CLIPModel, CLIPProcessor

pn.extension(design="bootstrap", sizing_mode="stretch_width")
import panel as pn
import pandas as pd
import os
import datetime
import io

from google_sheet import fetch_leaderboard
from google_drive import upload_to_drive

pn.extension()

# File upload widget
file_input = pn.widgets.FileInput(accept='.zip', multiple=False)

# Status message
status = pn.pane.Markdown("")

# Leaderboard display
leaderboard = pn.pane.DataFrame(pd.DataFrame(), width=600)

def submit_file(event):
    if file_input.value is None:
        status.object = "⚠️ Please upload a .zip file before submitting."
        return

    # Save uploaded file
    timestamp = datetime.datetime.now().isoformat().replace(":", "_")
    filename = f"{timestamp}_{file_input.filename}"
    submission_path = os.path.join("submissions", filename)
    os.makedirs("submissions", exist_ok=True)
    with open(submission_path, "wb") as f:
        f.write(file_input.value)

    try:
        drive_file_id = upload_to_drive(submission_path, filename)
        status.object = f"βœ… Uploaded to Google Drive [File ID: {drive_file_id}]"
    except Exception as e:
        status.object = f"❌ Failed to upload to Google Drive: {e}"

    # Update leaderboard
    try:
        df = fetch_leaderboard()
        if not df.empty:
            df_sorted = df.sort_values(by="score", ascending=False)
            leaderboard.object = df_sorted
        else:
            leaderboard.object = pd.DataFrame()
    except Exception as e:
        status.object += f"\n⚠️ Could not load leaderboard: {e}"

submit_button = pn.widgets.Button(name="Submit", button_type="primary")
submit_button.on_click(submit_file)

# Layout
app = pn.Column(
    "## πŸ† Hackathon Leaderboard",
    file_input,
    submit_button,
    status,
    "### Leaderboard",
    leaderboard
)

app.servable()


# ICON_URLS = {
#     "brand-github": "https://github.com/holoviz/panel",
#     "brand-twitter": "https://twitter.com/Panel_Org",
#     "brand-linkedin": "https://www.linkedin.com/company/panel-org",
#     "message-circle": "https://discourse.holoviz.org/",
#     "brand-discord": "https://discord.gg/AXRHnJU6sP",
# }


# async def random_url(_):
#     pet = random.choice(["cat", "dog"])
#     api_url = f"https://api.the{pet}api.com/v1/images/search"
#     async with aiohttp.ClientSession() as session:
#         async with session.get(api_url) as resp:
#             return (await resp.json())[0]["url"]


# @pn.cache
# def load_processor_model(
#     processor_name: str, model_name: str
# ) -> Tuple[CLIPProcessor, CLIPModel]:
#     processor = CLIPProcessor.from_pretrained(processor_name)
#     model = CLIPModel.from_pretrained(model_name)
#     return processor, model


# async def open_image_url(image_url: str) -> Image:
#     async with aiohttp.ClientSession() as session:
#         async with session.get(image_url) as resp:
#             return Image.open(io.BytesIO(await resp.read()))


# def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
#     processor, model = load_processor_model(
#         "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
#     )
#     inputs = processor(
#         text=class_items,
#         images=[image],
#         return_tensors="pt",  # pytorch tensors
#     )
#     outputs = model(**inputs)
#     logits_per_image = outputs.logits_per_image
#     class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
#     return class_likelihoods[0]


# async def process_inputs(class_names: List[str], image_url: str):
#     """
#     High level function that takes in the user inputs and returns the
#     classification results as panel objects.
#     """
#     try:
#         main.disabled = True
#         if not image_url:
#             yield "##### ⚠️ Provide an image URL"
#             return
    
#         yield "##### βš™ Fetching image and running model..."
#         try:
#             pil_img = await open_image_url(image_url)
#             img = pn.pane.Image(pil_img, height=400, align="center")
#         except Exception as e:
#             yield f"##### πŸ˜” Something went wrong, please try a different URL!"
#             return
    
#         class_items = class_names.split(",")
#         class_likelihoods = get_similarity_scores(class_items, pil_img)
    
#         # build the results column
#         results = pn.Column("##### πŸŽ‰ Here are the results!", img)
    
#         for class_item, class_likelihood in zip(class_items, class_likelihoods):
#             row_label = pn.widgets.StaticText(
#                 name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
#             )
#             row_bar = pn.indicators.Progress(
#                 value=int(class_likelihood * 100),
#                 sizing_mode="stretch_width",
#                 bar_color="secondary",
#                 margin=(0, 10),
#                 design=pn.theme.Material,
#             )
#             results.append(pn.Column(row_label, row_bar))
#         yield results
#     finally:
#         main.disabled = False


# # create widgets
# randomize_url = pn.widgets.Button(name="Randomize URL", align="end")

# image_url = pn.widgets.TextInput(
#     name="Image URL to classify",
#     value=pn.bind(random_url, randomize_url),
# )
# class_names = pn.widgets.TextInput(
#     name="Comma separated class names",
#     placeholder="Enter possible class names, e.g. cat, dog",
#     value="cat, dog, parrot",
# )

# input_widgets = pn.Column(
#     "##### 😊 Click randomize or paste a URL to start classifying!",
#     pn.Row(image_url, randomize_url),
#     class_names,
# )

# # add interactivity
# interactive_result = pn.panel(
#     pn.bind(process_inputs, image_url=image_url, class_names=class_names),
#     height=600,
# )

# # add footer
# footer_row = pn.Row(pn.Spacer(), align="center")
# for icon, url in ICON_URLS.items():
#     href_button = pn.widgets.Button(icon=icon, width=35, height=35)
#     href_button.js_on_click(code=f"window.open('{url}')")
#     footer_row.append(href_button)
# footer_row.append(pn.Spacer())

# # create dashboard
# main = pn.WidgetBox(
#     input_widgets,
#     interactive_result,
#     footer_row,
# )

# title = "Panel Demo - Image Classification"
# pn.template.BootstrapTemplate(
#     title=title,
#     main=main,
#     main_max_width="min(50%, 698px)",
#     header_background="#F08080",
# ).servable(title=title)