com3dian commited on
Commit
9ad433e
Β·
verified Β·
1 Parent(s): 62b9087

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +134 -51
app.py CHANGED
@@ -1,64 +1,147 @@
1
- import panel as pn
2
- import pandas as pd
3
- import os
4
- import datetime
5
  import io
 
 
6
 
7
- from google_sheet import fetch_leaderboard
8
- from google_drive import upload_to_drive
 
 
9
 
10
- pn.extension()
11
 
12
- # File upload widget
13
- file_input = pn.widgets.FileInput(accept='.zip', multiple=False)
 
 
 
 
 
14
 
15
- # Status message
16
- status = pn.pane.Markdown("")
17
 
18
- # Leaderboard display
19
- leaderboard = pn.pane.DataFrame(pd.DataFrame(), width=600)
 
 
 
 
20
 
21
- def submit_file(event):
22
- if file_input.value is None:
23
- status.object = "⚠️ Please upload a .zip file before submitting."
24
- return
25
 
26
- # Save uploaded file
27
- timestamp = datetime.datetime.now().isoformat().replace(":", "_")
28
- filename = f"{timestamp}_{file_input.filename}"
29
- submission_path = os.path.join("submissions", filename)
30
- os.makedirs("submissions", exist_ok=True)
31
- with open(submission_path, "wb") as f:
32
- f.write(file_input.value)
 
 
 
 
 
 
33
 
34
- try:
35
- drive_file_id = upload_to_drive(submission_path, filename)
36
- status.object = f"βœ… Uploaded to Google Drive [File ID: {drive_file_id}]"
37
- except Exception as e:
38
- status.object = f"❌ Failed to upload to Google Drive: {e}"
39
 
40
- # Update leaderboard
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  try:
42
- df = fetch_leaderboard()
43
- if not df.empty:
44
- df_sorted = df.sort_values(by="score", ascending=False)
45
- leaderboard.object = df_sorted
46
- else:
47
- leaderboard.object = pd.DataFrame()
48
- except Exception as e:
49
- status.object += f"\n⚠️ Could not load leaderboard: {e}"
50
-
51
- submit_button = pn.widgets.Button(name="Submit", button_type="primary")
52
- submit_button.on_click(submit_file)
53
-
54
- # Layout
55
- app = pn.Column(
56
- "## πŸ† Hackathon Leaderboard",
57
- file_input,
58
- submit_button,
59
- status,
60
- "### Leaderboard",
61
- leaderboard
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  )
63
 
64
- app.servable()
 
 
 
 
 
 
 
 
 
 
 
1
  import io
2
+ import random
3
+ from typing import List, Tuple
4
 
5
+ import aiohttp
6
+ import panel as pn
7
+ from PIL import Image
8
+ from transformers import CLIPModel, CLIPProcessor
9
 
10
+ pn.extension(design="bootstrap", sizing_mode="stretch_width")
11
 
12
+ ICON_URLS = {
13
+ "brand-github": "https://github.com/holoviz/panel",
14
+ "brand-twitter": "https://twitter.com/Panel_Org",
15
+ "brand-linkedin": "https://www.linkedin.com/company/panel-org",
16
+ "message-circle": "https://discourse.holoviz.org/",
17
+ "brand-discord": "https://discord.gg/AXRHnJU6sP",
18
+ }
19
 
 
 
20
 
21
+ async def random_url(_):
22
+ pet = random.choice(["cat", "dog"])
23
+ api_url = f"https://api.the{pet}api.com/v1/images/search"
24
+ async with aiohttp.ClientSession() as session:
25
+ async with session.get(api_url) as resp:
26
+ return (await resp.json())[0]["url"]
27
 
 
 
 
 
28
 
29
+ @pn.cache
30
+ def load_processor_model(
31
+ processor_name: str, model_name: str
32
+ ) -> Tuple[CLIPProcessor, CLIPModel]:
33
+ processor = CLIPProcessor.from_pretrained(processor_name)
34
+ model = CLIPModel.from_pretrained(model_name)
35
+ return processor, model
36
+
37
+
38
+ async def open_image_url(image_url: str) -> Image:
39
+ async with aiohttp.ClientSession() as session:
40
+ async with session.get(image_url) as resp:
41
+ return Image.open(io.BytesIO(await resp.read()))
42
 
 
 
 
 
 
43
 
44
+ def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
45
+ processor, model = load_processor_model(
46
+ "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
47
+ )
48
+ inputs = processor(
49
+ text=class_items,
50
+ images=[image],
51
+ return_tensors="pt", # pytorch tensors
52
+ )
53
+ outputs = model(**inputs)
54
+ logits_per_image = outputs.logits_per_image
55
+ class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
56
+ return class_likelihoods[0]
57
+
58
+
59
+ async def process_inputs(class_names: List[str], image_url: str):
60
+ """
61
+ High level function that takes in the user inputs and returns the
62
+ classification results as panel objects.
63
+ """
64
  try:
65
+ main.disabled = True
66
+ if not image_url:
67
+ yield "##### ⚠️ Provide an image URL"
68
+ return
69
+
70
+ yield "##### βš™ Fetching image and running model..."
71
+ try:
72
+ pil_img = await open_image_url(image_url)
73
+ img = pn.pane.Image(pil_img, height=400, align="center")
74
+ except Exception as e:
75
+ yield f"##### πŸ˜” Something went wrong, please try a different URL!"
76
+ return
77
+
78
+ class_items = class_names.split(",")
79
+ class_likelihoods = get_similarity_scores(class_items, pil_img)
80
+
81
+ # build the results column
82
+ results = pn.Column("##### πŸŽ‰ Here are the results!", img)
83
+
84
+ for class_item, class_likelihood in zip(class_items, class_likelihoods):
85
+ row_label = pn.widgets.StaticText(
86
+ name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
87
+ )
88
+ row_bar = pn.indicators.Progress(
89
+ value=int(class_likelihood * 100),
90
+ sizing_mode="stretch_width",
91
+ bar_color="secondary",
92
+ margin=(0, 10),
93
+ design=pn.theme.Material,
94
+ )
95
+ results.append(pn.Column(row_label, row_bar))
96
+ yield results
97
+ finally:
98
+ main.disabled = False
99
+
100
+
101
+ # create widgets
102
+ randomize_url = pn.widgets.Button(name="Randomize URL", align="end")
103
+
104
+ image_url = pn.widgets.TextInput(
105
+ name="Image URL to classify",
106
+ value=pn.bind(random_url, randomize_url),
107
+ )
108
+ class_names = pn.widgets.TextInput(
109
+ name="Comma separated class names",
110
+ placeholder="Enter possible class names, e.g. cat, dog",
111
+ value="cat, dog, parrot",
112
+ )
113
+
114
+ input_widgets = pn.Column(
115
+ "##### 😊 Click randomize or paste a URL to start classifying!",
116
+ pn.Row(image_url, randomize_url),
117
+ class_names,
118
+ )
119
+
120
+ # add interactivity
121
+ interactive_result = pn.panel(
122
+ pn.bind(process_inputs, image_url=image_url, class_names=class_names),
123
+ height=600,
124
+ )
125
+
126
+ # add footer
127
+ footer_row = pn.Row(pn.Spacer(), align="center")
128
+ for icon, url in ICON_URLS.items():
129
+ href_button = pn.widgets.Button(icon=icon, width=35, height=35)
130
+ href_button.js_on_click(code=f"window.open('{url}')")
131
+ footer_row.append(href_button)
132
+ footer_row.append(pn.Spacer())
133
+
134
+ # create dashboard
135
+ main = pn.WidgetBox(
136
+ input_widgets,
137
+ interactive_result,
138
+ footer_row,
139
  )
140
 
141
+ title = "Panel Demo - Image Classification"
142
+ pn.template.BootstrapTemplate(
143
+ title=title,
144
+ main=main,
145
+ main_max_width="min(50%, 698px)",
146
+ header_background="#F08080",
147
+ ).servable(title=title)