File size: 9,684 Bytes
bcad4e0 536e3e0 3cfcf03 536e3e0 3cfcf03 536e3e0 3cfcf03 536e3e0 3cfcf03 7326090 536e3e0 3cfcf03 168dd6b 536e3e0 7326090 536e3e0 168dd6b 3cfcf03 7326090 3cfcf03 168dd6b 7326090 168dd6b 47c2c1f 3cfcf03 536e3e0 168dd6b 536e3e0 3cfcf03 536e3e0 3cfcf03 bcad4e0 0144580 106b0fa bcad4e0 168dd6b bcad4e0 106b0fa 168dd6b 106b0fa 168dd6b bcad4e0 270ccd6 bcad4e0 9bd2f1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import gradio as gr
import whisper
from transformers import pipeline
import gradio as gr
import pandas as pd
from io import StringIO
import os,re
from langchain.llms import OpenAI
import pandas as pd
from langchain.document_loaders import UnstructuredPDFLoader
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.prompts import PromptTemplate
from langchain.callbacks.stdout import StdOutCallbackHandler
from langchain.chat_models.openai import ChatOpenAI
from langchain.prompts.prompt import PromptTemplate
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
def predict(text):
# loader = UnstructuredPDFLoader(file_obj.orig_name)
# data = loader.load()
# text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
# texts = text_splitter.split_documents(data)
# embeddings = OpenAIEmbeddings()
# docsearch = Chroma.from_documents(texts, embeddings)
# qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="map_reduce", retriever=docsearch.as_retriever())
prompt_template = """Ignore all previous instructions. You are the world's hearing aid company markerting agent.
I am going to give you a text of a customer. Analyze it and you have 4 products in list which you have to suggest to the customer:
ampli-mini it is mainly works for Maximum comfort and discretion, ampli-connect it is mainly works for Connected to the things you love,
ampli-energy it is mainly works for Full of energy, like you, ampli-easy it is mainly works for Allow yourself to hear well.
You can also be creative, funny, or show emotions at time.
also share the book a appointment link of your company https://www.amplifon.com/uk/book-an-appointment
Question: {question}
Product details:"""
prompt_template_lang = """
You are the world's best languages translator. Will give you some text or paragraph which you have to convert into Tamil, Hindi, Kannada
and French.
Input Text: {text}
Tamil:
Hindi:
Kannada:
French:
"""
PROMPT = PromptTemplate(
template=prompt_template, input_variables=["question"]
)
PROMPT_lang = PromptTemplate(
template=prompt_template_lang, input_variables=["text"]
)
# chain_type_kwargs = {"prompt": PROMPT}
# qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever(), chain_type_kwargs=chain_type_kwargs)
#Actually, Hi, how are you doing? Actually, I am looking for the hearing aid for my grandfather. He has like age around 62, 65 year old and one of the like major thing that I am looking for the hearing aid product which is like maximum comfort. So if you have anything in that category, so can you please tell me? Thank you.
llm = OpenAI()
# prompt = PromptTemplate(
# input_variables=["product"],
# template="What is a good name for a company that makes {product}?",
# )
chain = LLMChain(llm=llm, prompt=PROMPT)
chain_lang = LLMChain(llm=llm, prompt=PROMPT_lang)
resp = chain.run(question=text)
resp_lang = chain_lang.run(text=resp)
# print(resp)
# response = []
# category = ["ampli-mini", "ampli-connect", "ampli-energy", "ampli-easy"]
# for value in category:
# response.append({value:ai(qa, value)})
# html_output = ""
# for obj in response:
# # Loop through the key-value pairs in the object
# for key, value in obj.items():
# value = re.sub(r'[\d\.]+', '', value)
# value_list = value.strip().split('\n')
# value_html = "<ol>"
# for item in value_list:
# value_html += "<li>{}</li>".format(item.strip())
# value_html += "</ol>"
# html_output += "<h2>{}</h2>".format(key)
# html_output += value_html
return [resp, resp_lang]
# def ai(qa,category):
# query = "please suggest "+ category +" interview questions"
# data = list(filter(None, qa.run(query).split('\n')))
# results = list(filter(lambda x: x != ' ', data))
# results = "\n".join(results)
# return results
model = whisper.load_model("base")
sentiment_analysis = pipeline("sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions")
def analyze_sentiment(text):
results = sentiment_analysis(text)
sentiment_results = {result['label']: result['score'] for result in results}
return sentiment_results
def get_sentiment_emoji(sentiment):
# Define the emojis corresponding to each sentiment
emoji_mapping = {
"disappointment": "😞",
"sadness": "😢",
"annoyance": "😠",
"neutral": "😐",
"disapproval": "👎",
"realization": "😮",
"nervousness": "😬",
"approval": "👍",
"joy": "😄",
"anger": "😡",
"embarrassment": "😳",
"caring": "🤗",
"remorse": "😔",
"disgust": "🤢",
"grief": "😥",
"confusion": "😕",
"relief": "😌",
"desire": "😍",
"admiration": "😌",
"optimism": "😊",
"fear": "😨",
"love": "❤️",
"excitement": "🎉",
"curiosity": "🤔",
"amusement": "😄",
"surprise": "😲",
"gratitude": "🙏",
"pride": "🦁"
}
return emoji_mapping.get(sentiment, "")
def display_sentiment_results(sentiment_results, option):
sentiment_text = ""
for sentiment, score in sentiment_results.items():
emoji = get_sentiment_emoji(sentiment)
if option == "Sentiment Only":
sentiment_text += f"{sentiment} {emoji}\n"
elif option == "Sentiment + Score":
sentiment_text += f"{sentiment} {emoji}: {score}\n"
return sentiment_text
def inference(audio, sentiment_option):
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(model.device)
_, probs = model.detect_language(mel)
lang = max(probs, key=probs.get)
options = whisper.DecodingOptions(fp16=False)
result = whisper.decode(model, mel, options)
sentiment_results = analyze_sentiment(result.text)
print(result.text)
prediction = predict(result.text)
sentiment_output = display_sentiment_results(sentiment_results, sentiment_option)
return lang.upper(), result.text, sentiment_output, prediction[0], prediction[1]
title = """<h1 align="center">🎤 Multilingual ASR 💬</h1>"""
image_path = "thmbnail.jpg"
description = """
💻 This demo showcases a general-purpose speech recognition model called Whisper. It is trained on a large dataset of diverse audio and supports multilingual speech recognition, speech translation, and language identification tasks.<br><br>
<br>
⚙️ Components of the tool:<br>
<br>
- Real-time multilingual speech recognition<br>
- Language identification<br>
- Sentiment analysis of the transcriptions<br>
<br>
🎯 The sentiment analysis results are provided as a dictionary with different emotions and their corresponding scores.<br>
<br>
😃 The sentiment analysis results are displayed with emojis representing the corresponding sentiment.<br>
<br>
✅ The higher the score for a specific emotion, the stronger the presence of that emotion in the transcribed text.<br>
<br>
❓ Use the microphone for real-time speech recognition.<br>
<br>
⚡️ The model will transcribe the audio and perform sentiment analysis on the transcribed text.<br>
"""
custom_css = """
#banner-image {
display: block;
margin-left: auto;
margin-right: auto;
}
#chat-message {
font-size: 14px;
min-height: 300px;
}
"""
block = gr.Blocks(css=custom_css)
with block:
gr.HTML(title)
with gr.Row():
with gr.Column():
gr.Image(image_path, elem_id="banner-image", show_label=False)
with gr.Column():
gr.HTML(description)
with gr.Group():
with gr.Box():
audio = gr.Audio(
label="Input Audio",
show_label=False,
source="microphone",
type="filepath"
)
sentiment_option = gr.Radio(
choices=["Sentiment Only", "Sentiment + Score"],
label="Select an option",
default="Sentiment Only"
)
btn = gr.Button("Transcribe")
lang_str = gr.Textbox(label="Language")
text = gr.Textbox(label="Transcription")
sentiment_output = gr.Textbox(label="Sentiment Analysis Results", output=True)
prediction = gr.Textbox(label="Prediction")
language_translation = gr.Textbox(label="Language Translation")
btn.click(inference, inputs=[audio, sentiment_option], outputs=[lang_str, text, sentiment_output, prediction,language_translation])
# gr.HTML('''
# <div class="footer">
# <p>Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a>
# </p>
# </div>
# ''')
block.launch()
|