deepakchawla-cb commited on
Commit
168dd6b
·
1 Parent(s): 3f9d5b2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -33
app.py CHANGED
@@ -31,35 +31,6 @@ from langchain.chains import LLMChain
31
 
32
  OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
33
 
34
- from googletrans import Translator
35
-
36
- def translate_text(text, source_lang, target_lang):
37
- translator = Translator()
38
- translated = translator.translate(text, src=source_lang, dest=target_lang)
39
- return translated.text
40
-
41
- # Translate English to Tamil
42
- english_text = "Hello, how are you?"
43
- tamil_text = translate_text(english_text, 'en', 'ta')
44
- print("English to Tamil:", tamil_text)
45
-
46
- # Translate Tamil to English
47
- tamil_text = "வணக்கம், நீங்கள் எப்படி இருக்கின்றீர்கள்?"
48
- english_text = translate_text(tamil_text, 'ta', 'en')
49
- print("Tamil to English:", english_text)
50
-
51
- # Translate English to Kannada
52
- english_text = "Hello, how are you?"
53
- kannada_text = translate_text(english_text, 'en', 'kn')
54
- print("English to Kannada:", kannada_text)
55
-
56
- # Translate Kannada to English
57
- kannada_text = "ಹಲೋ, ನೀವು ಹೇಗಿದ್ದೀರಿ?"
58
- english_text = translate_text(kannada_text, 'kn', 'en')
59
- print("Kannada to English:", english_text)
60
-
61
-
62
-
63
  def predict(text):
64
  # loader = UnstructuredPDFLoader(file_obj.orig_name)
65
  # data = loader.load()
@@ -79,10 +50,23 @@ def predict(text):
79
 
80
  Question: {question}
81
  Product details:"""
 
 
 
 
 
 
 
 
 
 
82
  PROMPT = PromptTemplate(
83
  template=prompt_template, input_variables=["question"]
84
  )
85
- chain_type_kwargs = {"prompt": PROMPT}
 
 
 
86
  # qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever(), chain_type_kwargs=chain_type_kwargs)
87
 
88
  #Actually, Hi, how are you doing? Actually, I am looking for the hearing aid for my grandfather. He has like age around 62, 65 year old and one of the like major thing that I am looking for the hearing aid product which is like maximum comfort. So if you have anything in that category, so can you please tell me? Thank you.
@@ -93,7 +77,11 @@ Product details:"""
93
  # template="What is a good name for a company that makes {product}?",
94
  # )
95
  chain = LLMChain(llm=llm, prompt=PROMPT)
 
 
96
  resp = chain.run(question=text)
 
 
97
  # print(resp)
98
 
99
  # response = []
@@ -116,7 +104,7 @@ Product details:"""
116
  # html_output += value_html
117
 
118
 
119
- return resp
120
 
121
  # def ai(qa,category):
122
  # query = "please suggest "+ category +" interview questions"
@@ -195,7 +183,7 @@ def inference(audio, sentiment_option):
195
  prediction = predict(result.text)
196
  sentiment_output = display_sentiment_results(sentiment_results, sentiment_option)
197
 
198
- return lang.upper(), result.text, sentiment_output, prediction
199
 
200
  title = """<h1 align="center">🎤 Multilingual ASR 💬</h1>"""
201
  image_path = "thmbnail.jpg"
@@ -271,8 +259,11 @@ with block:
271
  sentiment_output = gr.Textbox(label="Sentiment Analysis Results", output=True)
272
 
273
  prediction = gr.Textbox(label="Prediction")
 
 
 
274
 
275
- btn.click(inference, inputs=[audio, sentiment_option], outputs=[lang_str, text, sentiment_output, prediction])
276
 
277
  # gr.HTML('''
278
  # <div class="footer">
 
31
 
32
  OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  def predict(text):
35
  # loader = UnstructuredPDFLoader(file_obj.orig_name)
36
  # data = loader.load()
 
50
 
51
  Question: {question}
52
  Product details:"""
53
+
54
+ prompt_template_lang = """
55
+ You are the world's best languages translator. Will give you some text or paragraph which you have to convert into Tamil, Hindi, Kannada
56
+ and French.
57
+ Input Text: {text}
58
+ Tamil:
59
+ Hindi:
60
+ Kannada:
61
+ French:
62
+ """
63
  PROMPT = PromptTemplate(
64
  template=prompt_template, input_variables=["question"]
65
  )
66
+ PROMPT_lang = PromptTemplate(
67
+ template=prompt_template_lang, input_variables=["text"]
68
+ )
69
+ # chain_type_kwargs = {"prompt": PROMPT}
70
  # qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever(), chain_type_kwargs=chain_type_kwargs)
71
 
72
  #Actually, Hi, how are you doing? Actually, I am looking for the hearing aid for my grandfather. He has like age around 62, 65 year old and one of the like major thing that I am looking for the hearing aid product which is like maximum comfort. So if you have anything in that category, so can you please tell me? Thank you.
 
77
  # template="What is a good name for a company that makes {product}?",
78
  # )
79
  chain = LLMChain(llm=llm, prompt=PROMPT)
80
+ chain_lang = LLMChain(llm=llm, prompt=PROMPT_lang)
81
+
82
  resp = chain.run(question=text)
83
+ resp_lang = chain_lang.run(text=resp)
84
+
85
  # print(resp)
86
 
87
  # response = []
 
104
  # html_output += value_html
105
 
106
 
107
+ return [resp, resp_lang]
108
 
109
  # def ai(qa,category):
110
  # query = "please suggest "+ category +" interview questions"
 
183
  prediction = predict(result.text)
184
  sentiment_output = display_sentiment_results(sentiment_results, sentiment_option)
185
 
186
+ return lang.upper(), result.text, sentiment_output, prediction[0], prediction[1]
187
 
188
  title = """<h1 align="center">🎤 Multilingual ASR 💬</h1>"""
189
  image_path = "thmbnail.jpg"
 
259
  sentiment_output = gr.Textbox(label="Sentiment Analysis Results", output=True)
260
 
261
  prediction = gr.Textbox(label="Prediction")
262
+
263
+ language_translation = gr.Textbox(label="Language Translation")
264
+
265
 
266
+ btn.click(inference, inputs=[audio, sentiment_option], outputs=[lang_str, text, sentiment_output, prediction,language_translation])
267
 
268
  # gr.HTML('''
269
  # <div class="footer">