Spaces:
Running
Running
import torch | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig | |
model_path = "cody82/unitrip" # путь к локальной модели | |
config = AutoConfig.from_pretrained(model_path, local_files_only=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_path, local_files_only=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_path, | |
config=config, | |
local_files_only=True, | |
torch_dtype=torch.float32, | |
device_map="auto" if torch.cuda.is_available() else None, | |
) | |
system_message = "Ты — умный помощник по Университету Иннополис." | |
def respond(message, history=None): | |
if history is None: | |
history = [] | |
prompt = f"{system_message}\nUser: {message}\nAssistant:" | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=128, | |
do_sample=False, | |
pad_token_id=tokenizer.eos_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
use_cache=True, | |
) | |
generated_tokens = outputs[0][inputs["input_ids"].shape[1]:] | |
answer = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip() | |
history.append((message, answer)) | |
return history | |
chat = gr.ChatInterface(fn=respond, title="Innopolis Assistant") | |
chat.launch() | |