Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,43 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
-
from transformers import AutoTokenizer,
|
4 |
|
5 |
-
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
7 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
8 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
-
model.to(device)
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def respond(message, history=None):
|
17 |
if history is None:
|
18 |
history = []
|
19 |
|
20 |
-
prompt =
|
21 |
-
"Используя следующий контекст, ответь на вопрос четко и кратко.\n"
|
22 |
-
f"Контекст: {context}\n"
|
23 |
-
f"Вопрос: {message}\n"
|
24 |
-
"Ответ:"
|
25 |
-
)
|
26 |
-
|
27 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
28 |
|
|
|
29 |
with torch.no_grad():
|
30 |
outputs = model.generate(
|
31 |
**inputs,
|
32 |
-
max_new_tokens=
|
33 |
do_sample=False,
|
34 |
-
|
|
|
|
|
35 |
)
|
36 |
-
|
|
|
|
|
37 |
|
38 |
history.append((message, answer))
|
39 |
return history
|
40 |
|
41 |
-
|
42 |
-
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
4 |
|
5 |
+
model_path = "cody82/unitrip" # путь к локальной модели
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
config = AutoConfig.from_pretrained(model_path, local_files_only=True)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, local_files_only=True)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
model_path,
|
11 |
+
config=config,
|
12 |
+
local_files_only=True,
|
13 |
+
torch_dtype=torch.float32,
|
14 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
15 |
+
)
|
16 |
+
|
17 |
+
system_message = "Ты — умный помощник по Университету Иннополис."
|
18 |
|
19 |
def respond(message, history=None):
|
20 |
if history is None:
|
21 |
history = []
|
22 |
|
23 |
+
prompt = f"{system_message}\nUser: {message}\nAssistant:"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
26 |
with torch.no_grad():
|
27 |
outputs = model.generate(
|
28 |
**inputs,
|
29 |
+
max_new_tokens=128,
|
30 |
do_sample=False,
|
31 |
+
pad_token_id=tokenizer.eos_token_id,
|
32 |
+
eos_token_id=tokenizer.eos_token_id,
|
33 |
+
use_cache=True,
|
34 |
)
|
35 |
+
|
36 |
+
generated_tokens = outputs[0][inputs["input_ids"].shape[1]:]
|
37 |
+
answer = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
|
38 |
|
39 |
history.append((message, answer))
|
40 |
return history
|
41 |
|
42 |
+
chat = gr.ChatInterface(fn=respond, title="Innopolis Assistant")
|
43 |
+
chat.launch()
|