|
from transformers import AutoProcessor, AutoModelForImageClassification, pipeline
|
|
from PIL import Image
|
|
import torch
|
|
|
|
|
|
def load_classification_model():
|
|
processor = AutoProcessor.from_pretrained("Shresthadev403/food-image-classification")
|
|
model = AutoModelForImageClassification.from_pretrained("Shresthadev403/food-image-classification")
|
|
return processor, model
|
|
def load_text_generator():
|
|
return pipeline( "text2text-generation",model="distilgpt2")
|
|
processor, model = load_classification_model()
|
|
text_generator = load_text_generator()
|
|
|
|
|
|
def predict_dish(image: Image.Image):
|
|
try:
|
|
image = Image.open(image).convert("RGB")
|
|
inputs = processor(images=image, return_tensors="pt")
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
logits = outputs.logits
|
|
predicted_class_idx = logits.argmax(-1).item()
|
|
label = model.config.id2label[predicted_class_idx]
|
|
return label.lower().replace(" ", "_")
|
|
except Exception as e:
|
|
print(f"β Error in dish prediction: {e}")
|
|
return "unknown_dish"
|
|
|
|
|
|
|
|
def generate_recipe(dish, diet=None, cuisine=None, cook_time=None):
|
|
|
|
filters = []
|
|
if diet and diet != "Any":
|
|
filters.append(f"{diet} diet")
|
|
if cuisine and cuisine != "Any":
|
|
filters.append(f"{cuisine} cuisine")
|
|
if cook_time and cook_time != "Any":
|
|
filters.append(f"ready in {cook_time}")
|
|
filter_text = ", ".join(filters)
|
|
|
|
prompt = f"""
|
|
Create a step-by-step recipe for {dish}.
|
|
Include:
|
|
- Ingredients with quantities
|
|
- Step-by-step instructions cooking steps
|
|
Make sure it's a {filter_text} recipe."""
|
|
try:
|
|
result = text_generator(prompt.strip(), max_length=282, do_sample=False)
|
|
return result[0]['generated_text']
|
|
except Exception as e:
|
|
print(f"β Error generating recipe: {e}")
|
|
return "Sorry, couldn't generate a recipe at the moment."
|
|
|