Upload 3 files
Browse files- app.py +174 -0
- recipe_model.py +54 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#import streamlit as st
|
2 |
+
#from PIL import Image
|
3 |
+
#from recipe_model import predict_dish, generate_recipe
|
4 |
+
|
5 |
+
#st.set_page_config(page_title="AI Recipe Chef", layout="centered", page_icon="🍳")
|
6 |
+
#st.title("👨🍳 AI Recipe Chef")
|
7 |
+
#st.write("Upload any food image and get a real AI-generated recipe with filters.")
|
8 |
+
#st.markdown(
|
9 |
+
# "<h1 style='text-align: center; color: #F63366;'>👨🍳 AI Recipe Chef</h1>",
|
10 |
+
# unsafe_allow_html=True
|
11 |
+
#)
|
12 |
+
#st.markdown("<p style='text-align: center;'>Upload a food image and get a personalized recipe with filters!</p>", unsafe_allow_html=True)
|
13 |
+
#uploaded_image = st.file_uploader("Upload food image", type=["jpg", "jpeg", "png"])
|
14 |
+
#st.sidebar.title("🔍History")
|
15 |
+
#diet = st.selectbox("Dietary Preference", [
|
16 |
+
# "Any", "Vegetarian", "Non-Vegetarian", "Keto", "Gluten-Free", "Paleo"])
|
17 |
+
|
18 |
+
#cuisine = st.selectbox("Cuisine", ["Any","Indian", "Chinese", "Italian", "Mexican", "Meditarrean"])
|
19 |
+
#cook_time = st.selectbox("Cook Time", ["Any","<15 mins", "15-30 mins", ">30 mins","1 hour"])
|
20 |
+
|
21 |
+
#if uploaded_image:
|
22 |
+
# st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
|
23 |
+
# with st.spinner("Detecting dish..."):
|
24 |
+
# dish = predict_dish(uploaded_image)
|
25 |
+
# st.success(f"Detected Dish: {dish}")
|
26 |
+
|
27 |
+
# with st.spinner("Generating recipe..."):
|
28 |
+
# import time
|
29 |
+
# time.sleep(0.8)
|
30 |
+
# recipe = generate_recipe(dish, diet, cuisine, cook_time)
|
31 |
+
|
32 |
+
# st.subheader("📋 Ingredients & Instructions")
|
33 |
+
# st.markdown(recipe, unsafe_allow_html=True)
|
34 |
+
from __future__ import annotations
|
35 |
+
import streamlit as st
|
36 |
+
from PIL import Image
|
37 |
+
from typing import Dict, List
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
# ---------------- Dummy backend ----------------
|
42 |
+
def generate_recipes(img: Image.Image, filters: Dict[str, str]) -> List[Dict]:
|
43 |
+
"""Return hard-coded recipes; swap with real model later."""
|
44 |
+
return [
|
45 |
+
{
|
46 |
+
"title": "Cheesy Veg Sandwich",
|
47 |
+
"diet": filters["diet"],
|
48 |
+
"cuisine": filters["cuisine"],
|
49 |
+
"cook_time": filters["cook_time"],
|
50 |
+
"ingredients": [
|
51 |
+
"2 bread slices",
|
52 |
+
"1 slice cheese",
|
53 |
+
"Chopped tomato",
|
54 |
+
"Chopped onion",
|
55 |
+
"Butter",
|
56 |
+
],
|
57 |
+
"instructions": [
|
58 |
+
"Spread butter on bread.",
|
59 |
+
"Add cheese and veggies.",
|
60 |
+
"Grill or toast till golden.",
|
61 |
+
"Serve hot with ketchup.",
|
62 |
+
],
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"title": "Quick Egg Fried Rice",
|
66 |
+
"diet": filters["diet"],
|
67 |
+
"cuisine": "Chinese",
|
68 |
+
"cook_time": "<30 min",
|
69 |
+
"ingredients": [
|
70 |
+
"1 cup cooked rice",
|
71 |
+
"2 eggs",
|
72 |
+
"Soy sauce",
|
73 |
+
"Chopped spring onion",
|
74 |
+
"Salt & pepper",
|
75 |
+
],
|
76 |
+
"instructions": [
|
77 |
+
"Scramble eggs in a pan.",
|
78 |
+
"Add rice and soy sauce.",
|
79 |
+
"Mix well with veggies.",
|
80 |
+
"Garnish with spring onion.",
|
81 |
+
],
|
82 |
+
},
|
83 |
+
]
|
84 |
+
|
85 |
+
# ---------------- UI ----------------
|
86 |
+
def main() -> None:
|
87 |
+
|
88 |
+
st.set_page_config(page_title="AI Recipe Generator", page_icon="🍳", layout="centered")
|
89 |
+
st.title("📸🍽️ AI-Powered Recipe Generator")
|
90 |
+
|
91 |
+
uploaded = st.file_uploader("Upload your fridge / pantry photo", type=["jpg", "jpeg", "png"])
|
92 |
+
if uploaded:
|
93 |
+
img = Image.open(uploaded)
|
94 |
+
st.image(img, caption="Uploaded image", use_column_width=True)
|
95 |
+
|
96 |
+
st.subheader("Filters")
|
97 |
+
col1, col2, col3 = st.columns(3)
|
98 |
+
with col1:
|
99 |
+
diet = st.selectbox("Diet", ["Any", "Vegetarian", "Vegan", "Keto", "Pescatarian", "Gluten-Free"])
|
100 |
+
with col2:
|
101 |
+
cuisine = st.selectbox("Cuisine", ["Any", "Indian", "Italian", "Mexican", "Chinese", "Mediterranean"])
|
102 |
+
with col3:
|
103 |
+
cook_time = st.selectbox("Cook time", ["Any", "<15 min", "<30 min", "<45 min", "1 hour+"])
|
104 |
+
|
105 |
+
if st.button("Generate Recipes", type="primary"):
|
106 |
+
with st.spinner("Chef-bot is thinking…"):
|
107 |
+
recs = generate_recipes(img, {"diet": diet, "cuisine": cuisine, "cook_time": cook_time})
|
108 |
+
|
109 |
+
if not recs:
|
110 |
+
st.warning("No recipes found — try relaxing a filter.")
|
111 |
+
else:
|
112 |
+
st.success(f"{len(recs)} recipe{'s' if len(recs)>1 else ''} found!")
|
113 |
+
show_recipes(recs)
|
114 |
+
|
115 |
+
if st.session_state.get("favourites"):
|
116 |
+
st.divider()
|
117 |
+
st.subheader("⭐ Saved favourites")
|
118 |
+
show_recipes(st.session_state["favourites"], favourite=True)
|
119 |
+
else:
|
120 |
+
st.info("👆 Upload an image to start.")
|
121 |
+
|
122 |
+
def show_recipes(recs: List[Dict], favourite: bool = False) -> None:
|
123 |
+
for i, r in enumerate(recs):
|
124 |
+
with st.expander(f"🍽️ {r['title']}"):
|
125 |
+
c1, c2, c3 = st.columns([2, 1, 1])
|
126 |
+
with c1:
|
127 |
+
st.markdown(f"**Diet:** {r['diet']}")
|
128 |
+
st.markdown(f"**Cuisine:** {r['cuisine']}")
|
129 |
+
st.markdown(f"**Time:** {r['cook_time']}")
|
130 |
+
with c2:
|
131 |
+
rating = st.slider("Rate", 1, 5, 3, key=f"rating_{i}_{favourite}")
|
132 |
+
st.session_state.setdefault("ratings", {})[r["title"]] = rating
|
133 |
+
with c3:
|
134 |
+
fav_key = f"fav_{i}_{favourite}"
|
135 |
+
if st.checkbox("❤️ Save", key=fav_key):
|
136 |
+
st.session_state.setdefault("favourites", []).append(r)
|
137 |
+
|
138 |
+
st.markdown("**Ingredients**")
|
139 |
+
st.markdown("\n".join(f"- {ing}" for ing in r["ingredients"]))
|
140 |
+
st.markdown("**Instructions**")
|
141 |
+
st.markdown("\n".join(f"{j+1}. {step}" for j, step in enumerate(r["instructions"])))
|
142 |
+
|
143 |
+
if __name__ == "__main__":
|
144 |
+
main()
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
# ---------- tiny helper to colour the diet tag ----------
|
151 |
+
def diet_badge(diet: str) -> str:
|
152 |
+
colors = {
|
153 |
+
"Vegetarian": "#34c759", # green
|
154 |
+
"Vegan": "#0a84ff", # blue
|
155 |
+
"Keto": "#ff9f0a", # orange
|
156 |
+
"Gluten-Free": "#ff375f", # pink
|
157 |
+
"Any": "#8e8e93", # grey
|
158 |
+
}
|
159 |
+
col = colors.get(diet, "#8e8e93")
|
160 |
+
return (
|
161 |
+
f"<span style='background:{col};color:white;"
|
162 |
+
"border-radius:4px;padding:2px 6px;font-size:0.85rem;'>"
|
163 |
+
f"{diet}</span>"
|
164 |
+
)
|
165 |
+
#if file:
|
166 |
+
# img = Image.open(file)
|
167 |
+
# st.image(img, caption="Your Image", use_column_width=True)
|
168 |
+
# with st.spinner("Thinking like a chef..."):
|
169 |
+
# dish = predict_dish(img)
|
170 |
+
# st.success(f"Detected Dish: **{dish}**")
|
171 |
+
# recipe = generate_recipe(dish, diet, cuisine, cook_time)
|
172 |
+
# st.subheader("📝 Recipe:")
|
173 |
+
# st.write(recipe)
|
174 |
+
|
recipe_model.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoProcessor, AutoModelForImageClassification, pipeline
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
def load_classification_model():
|
7 |
+
processor = AutoProcessor.from_pretrained("Shresthadev403/food-image-classification")
|
8 |
+
model = AutoModelForImageClassification.from_pretrained("Shresthadev403/food-image-classification")
|
9 |
+
return processor, model
|
10 |
+
def load_text_generator():
|
11 |
+
return pipeline( "text2text-generation",model="distilgpt2")
|
12 |
+
processor, model = load_classification_model()
|
13 |
+
text_generator = load_text_generator()
|
14 |
+
|
15 |
+
|
16 |
+
def predict_dish(image: Image.Image):
|
17 |
+
try:
|
18 |
+
image = Image.open(image).convert("RGB")
|
19 |
+
inputs = processor(images=image, return_tensors="pt")
|
20 |
+
with torch.no_grad():
|
21 |
+
outputs = model(**inputs)
|
22 |
+
logits = outputs.logits
|
23 |
+
predicted_class_idx = logits.argmax(-1).item()
|
24 |
+
label = model.config.id2label[predicted_class_idx]
|
25 |
+
return label.lower().replace(" ", "_")
|
26 |
+
except Exception as e:
|
27 |
+
print(f"❌ Error in dish prediction: {e}")
|
28 |
+
return "unknown_dish"
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
def generate_recipe(dish, diet=None, cuisine=None, cook_time=None):
|
33 |
+
|
34 |
+
filters = []
|
35 |
+
if diet and diet != "Any":
|
36 |
+
filters.append(f"{diet} diet")
|
37 |
+
if cuisine and cuisine != "Any":
|
38 |
+
filters.append(f"{cuisine} cuisine")
|
39 |
+
if cook_time and cook_time != "Any":
|
40 |
+
filters.append(f"ready in {cook_time}")
|
41 |
+
filter_text = ", ".join(filters)
|
42 |
+
|
43 |
+
prompt = f"""
|
44 |
+
Create a step-by-step recipe for {dish}.
|
45 |
+
Include:
|
46 |
+
- Ingredients with quantities
|
47 |
+
- Step-by-step instructions cooking steps
|
48 |
+
Make sure it's a {filter_text} recipe."""
|
49 |
+
try:
|
50 |
+
result = text_generator(prompt.strip(), max_length=282, do_sample=False)
|
51 |
+
return result[0]['generated_text']
|
52 |
+
except Exception as e:
|
53 |
+
print(f"❌ Error generating recipe: {e}")
|
54 |
+
return "Sorry, couldn't generate a recipe at the moment."
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
transformers
|
5 |
+
pillow
|