Spaces:
Running
Running
import numpy as np | |
from itertools import product as product | |
import torch | |
from torch.autograd import Function | |
import warnings | |
def nms_(dets, thresh): | |
""" | |
Courtesy of Ross Girshick | |
[https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/nms/py_cpu_nms.py] | |
""" | |
x1 = dets[:, 0] | |
y1 = dets[:, 1] | |
x2 = dets[:, 2] | |
y2 = dets[:, 3] | |
scores = dets[:, 4] | |
areas = (x2 - x1) * (y2 - y1) | |
order = scores.argsort()[::-1] | |
keep = [] | |
while order.size > 0: | |
i = order[0] | |
keep.append(int(i)) | |
xx1 = np.maximum(x1[i], x1[order[1:]]) | |
yy1 = np.maximum(y1[i], y1[order[1:]]) | |
xx2 = np.minimum(x2[i], x2[order[1:]]) | |
yy2 = np.minimum(y2[i], y2[order[1:]]) | |
w = np.maximum(0.0, xx2 - xx1) | |
h = np.maximum(0.0, yy2 - yy1) | |
inter = w * h | |
ovr = inter / (areas[i] + areas[order[1:]] - inter) | |
inds = np.where(ovr <= thresh)[0] | |
order = order[inds + 1] | |
return np.array(keep).astype(np.int32) | |
def decode(loc, priors, variances): | |
"""Decode locations from predictions using priors to undo | |
the encoding we did for offset regression at train time. | |
Args: | |
loc (tensor): location predictions for loc layers, | |
Shape: [num_priors,4] | |
priors (tensor): Prior boxes in center-offset form. | |
Shape: [num_priors,4]. | |
variances: (list[float]) Variances of priorboxes | |
Return: | |
decoded bounding box predictions | |
""" | |
boxes = torch.cat(( | |
priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:], | |
priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1) | |
boxes[:, :2] -= boxes[:, 2:] / 2 | |
boxes[:, 2:] += boxes[:, :2] | |
return boxes | |
def nms(boxes, scores, overlap=0.5, top_k=200): | |
"""Apply non-maximum suppression at test time to avoid detecting too many | |
overlapping bounding boxes for a given object. | |
Args: | |
boxes: (tensor) The location preds for the img, Shape: [num_priors,4]. | |
scores: (tensor) The class predscores for the img, Shape:[num_priors]. | |
overlap: (float) The overlap thresh for suppressing unnecessary boxes. | |
top_k: (int) The Maximum number of box preds to consider. | |
Return: | |
The indices of the kept boxes with respect to num_priors. | |
""" | |
keep = scores.new(scores.size(0)).zero_().long() | |
if boxes.numel() == 0: | |
return keep, 0 | |
x1 = boxes[:, 0] | |
y1 = boxes[:, 1] | |
x2 = boxes[:, 2] | |
y2 = boxes[:, 3] | |
area = torch.mul(x2 - x1, y2 - y1) | |
v, idx = scores.sort(0) # sort in ascending order | |
# I = I[v >= 0.01] | |
idx = idx[-top_k:] # indices of the top-k largest vals | |
xx1 = boxes.new() | |
yy1 = boxes.new() | |
xx2 = boxes.new() | |
yy2 = boxes.new() | |
w = boxes.new() | |
h = boxes.new() | |
# keep = torch.Tensor() | |
count = 0 | |
while idx.numel() > 0: | |
i = idx[-1] # index of current largest val | |
# keep.append(i) | |
keep[count] = i | |
count += 1 | |
if idx.size(0) == 1: | |
break | |
idx = idx[:-1] # remove kept element from view | |
# load bboxes of next highest vals | |
with warnings.catch_warnings(): | |
# Ignore UserWarning within this block | |
warnings.simplefilter("ignore", category=UserWarning) | |
torch.index_select(x1, 0, idx, out=xx1) | |
torch.index_select(y1, 0, idx, out=yy1) | |
torch.index_select(x2, 0, idx, out=xx2) | |
torch.index_select(y2, 0, idx, out=yy2) | |
# store element-wise max with next highest score | |
xx1 = torch.clamp(xx1, min=x1[i]) | |
yy1 = torch.clamp(yy1, min=y1[i]) | |
xx2 = torch.clamp(xx2, max=x2[i]) | |
yy2 = torch.clamp(yy2, max=y2[i]) | |
w.resize_as_(xx2) | |
h.resize_as_(yy2) | |
w = xx2 - xx1 | |
h = yy2 - yy1 | |
# check sizes of xx1 and xx2.. after each iteration | |
w = torch.clamp(w, min=0.0) | |
h = torch.clamp(h, min=0.0) | |
inter = w * h | |
# IoU = i / (area(a) + area(b) - i) | |
rem_areas = torch.index_select(area, 0, idx) # load remaining areas) | |
union = (rem_areas - inter) + area[i] | |
IoU = inter / union # store result in iou | |
# keep only elements with an IoU <= overlap | |
idx = idx[IoU.le(overlap)] | |
return keep, count | |
class Detect(object): | |
def __init__(self, num_classes=2, | |
top_k=750, nms_thresh=0.3, conf_thresh=0.05, | |
variance=[0.1, 0.2], nms_top_k=5000): | |
self.num_classes = num_classes | |
self.top_k = top_k | |
self.nms_thresh = nms_thresh | |
self.conf_thresh = conf_thresh | |
self.variance = variance | |
self.nms_top_k = nms_top_k | |
def forward(self, loc_data, conf_data, prior_data): | |
num = loc_data.size(0) | |
num_priors = prior_data.size(0) | |
conf_preds = conf_data.view(num, num_priors, self.num_classes).transpose(2, 1) | |
batch_priors = prior_data.view(-1, num_priors, 4).expand(num, num_priors, 4) | |
batch_priors = batch_priors.contiguous().view(-1, 4) | |
decoded_boxes = decode(loc_data.view(-1, 4), batch_priors, self.variance) | |
decoded_boxes = decoded_boxes.view(num, num_priors, 4) | |
output = torch.zeros(num, self.num_classes, self.top_k, 5) | |
for i in range(num): | |
boxes = decoded_boxes[i].clone() | |
conf_scores = conf_preds[i].clone() | |
for cl in range(1, self.num_classes): | |
c_mask = conf_scores[cl].gt(self.conf_thresh) | |
scores = conf_scores[cl][c_mask] | |
if scores.dim() == 0: | |
continue | |
l_mask = c_mask.unsqueeze(1).expand_as(boxes) | |
boxes_ = boxes[l_mask].view(-1, 4) | |
ids, count = nms(boxes_, scores, self.nms_thresh, self.nms_top_k) | |
count = count if count < self.top_k else self.top_k | |
output[i, cl, :count] = torch.cat((scores[ids[:count]].unsqueeze(1), boxes_[ids[:count]]), 1) | |
return output | |
class PriorBox(object): | |
def __init__(self, input_size, feature_maps, | |
variance=[0.1, 0.2], | |
min_sizes=[16, 32, 64, 128, 256, 512], | |
steps=[4, 8, 16, 32, 64, 128], | |
clip=False): | |
super(PriorBox, self).__init__() | |
self.imh = input_size[0] | |
self.imw = input_size[1] | |
self.feature_maps = feature_maps | |
self.variance = variance | |
self.min_sizes = min_sizes | |
self.steps = steps | |
self.clip = clip | |
def forward(self): | |
mean = [] | |
for k, fmap in enumerate(self.feature_maps): | |
feath = fmap[0] | |
featw = fmap[1] | |
for i, j in product(range(feath), range(featw)): | |
f_kw = self.imw / self.steps[k] | |
f_kh = self.imh / self.steps[k] | |
cx = (j + 0.5) / f_kw | |
cy = (i + 0.5) / f_kh | |
s_kw = self.min_sizes[k] / self.imw | |
s_kh = self.min_sizes[k] / self.imh | |
mean += [cx, cy, s_kw, s_kh] | |
output = torch.FloatTensor(mean).view(-1, 4) | |
if self.clip: | |
output.clamp_(max=1, min=0) | |
return output | |