fffiloni's picture
Migrated from GitHub
3650c12 verified
import numpy as np
from itertools import product as product
import torch
from torch.autograd import Function
import warnings
def nms_(dets, thresh):
"""
Courtesy of Ross Girshick
[https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/nms/py_cpu_nms.py]
"""
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1) * (y2 - y1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(int(i))
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1)
h = np.maximum(0.0, yy2 - yy1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return np.array(keep).astype(np.int32)
def decode(loc, priors, variances):
"""Decode locations from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
loc (tensor): location predictions for loc layers,
Shape: [num_priors,4]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded bounding box predictions
"""
boxes = torch.cat((
priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
boxes[:, :2] -= boxes[:, 2:] / 2
boxes[:, 2:] += boxes[:, :2]
return boxes
def nms(boxes, scores, overlap=0.5, top_k=200):
"""Apply non-maximum suppression at test time to avoid detecting too many
overlapping bounding boxes for a given object.
Args:
boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
scores: (tensor) The class predscores for the img, Shape:[num_priors].
overlap: (float) The overlap thresh for suppressing unnecessary boxes.
top_k: (int) The Maximum number of box preds to consider.
Return:
The indices of the kept boxes with respect to num_priors.
"""
keep = scores.new(scores.size(0)).zero_().long()
if boxes.numel() == 0:
return keep, 0
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
area = torch.mul(x2 - x1, y2 - y1)
v, idx = scores.sort(0) # sort in ascending order
# I = I[v >= 0.01]
idx = idx[-top_k:] # indices of the top-k largest vals
xx1 = boxes.new()
yy1 = boxes.new()
xx2 = boxes.new()
yy2 = boxes.new()
w = boxes.new()
h = boxes.new()
# keep = torch.Tensor()
count = 0
while idx.numel() > 0:
i = idx[-1] # index of current largest val
# keep.append(i)
keep[count] = i
count += 1
if idx.size(0) == 1:
break
idx = idx[:-1] # remove kept element from view
# load bboxes of next highest vals
with warnings.catch_warnings():
# Ignore UserWarning within this block
warnings.simplefilter("ignore", category=UserWarning)
torch.index_select(x1, 0, idx, out=xx1)
torch.index_select(y1, 0, idx, out=yy1)
torch.index_select(x2, 0, idx, out=xx2)
torch.index_select(y2, 0, idx, out=yy2)
# store element-wise max with next highest score
xx1 = torch.clamp(xx1, min=x1[i])
yy1 = torch.clamp(yy1, min=y1[i])
xx2 = torch.clamp(xx2, max=x2[i])
yy2 = torch.clamp(yy2, max=y2[i])
w.resize_as_(xx2)
h.resize_as_(yy2)
w = xx2 - xx1
h = yy2 - yy1
# check sizes of xx1 and xx2.. after each iteration
w = torch.clamp(w, min=0.0)
h = torch.clamp(h, min=0.0)
inter = w * h
# IoU = i / (area(a) + area(b) - i)
rem_areas = torch.index_select(area, 0, idx) # load remaining areas)
union = (rem_areas - inter) + area[i]
IoU = inter / union # store result in iou
# keep only elements with an IoU <= overlap
idx = idx[IoU.le(overlap)]
return keep, count
class Detect(object):
def __init__(self, num_classes=2,
top_k=750, nms_thresh=0.3, conf_thresh=0.05,
variance=[0.1, 0.2], nms_top_k=5000):
self.num_classes = num_classes
self.top_k = top_k
self.nms_thresh = nms_thresh
self.conf_thresh = conf_thresh
self.variance = variance
self.nms_top_k = nms_top_k
def forward(self, loc_data, conf_data, prior_data):
num = loc_data.size(0)
num_priors = prior_data.size(0)
conf_preds = conf_data.view(num, num_priors, self.num_classes).transpose(2, 1)
batch_priors = prior_data.view(-1, num_priors, 4).expand(num, num_priors, 4)
batch_priors = batch_priors.contiguous().view(-1, 4)
decoded_boxes = decode(loc_data.view(-1, 4), batch_priors, self.variance)
decoded_boxes = decoded_boxes.view(num, num_priors, 4)
output = torch.zeros(num, self.num_classes, self.top_k, 5)
for i in range(num):
boxes = decoded_boxes[i].clone()
conf_scores = conf_preds[i].clone()
for cl in range(1, self.num_classes):
c_mask = conf_scores[cl].gt(self.conf_thresh)
scores = conf_scores[cl][c_mask]
if scores.dim() == 0:
continue
l_mask = c_mask.unsqueeze(1).expand_as(boxes)
boxes_ = boxes[l_mask].view(-1, 4)
ids, count = nms(boxes_, scores, self.nms_thresh, self.nms_top_k)
count = count if count < self.top_k else self.top_k
output[i, cl, :count] = torch.cat((scores[ids[:count]].unsqueeze(1), boxes_[ids[:count]]), 1)
return output
class PriorBox(object):
def __init__(self, input_size, feature_maps,
variance=[0.1, 0.2],
min_sizes=[16, 32, 64, 128, 256, 512],
steps=[4, 8, 16, 32, 64, 128],
clip=False):
super(PriorBox, self).__init__()
self.imh = input_size[0]
self.imw = input_size[1]
self.feature_maps = feature_maps
self.variance = variance
self.min_sizes = min_sizes
self.steps = steps
self.clip = clip
def forward(self):
mean = []
for k, fmap in enumerate(self.feature_maps):
feath = fmap[0]
featw = fmap[1]
for i, j in product(range(feath), range(featw)):
f_kw = self.imw / self.steps[k]
f_kh = self.imh / self.steps[k]
cx = (j + 0.5) / f_kw
cy = (i + 0.5) / f_kh
s_kw = self.min_sizes[k] / self.imw
s_kh = self.min_sizes[k] / self.imh
mean += [cx, cy, s_kw, s_kh]
output = torch.FloatTensor(mean).view(-1, 4)
if self.clip:
output.clamp_(max=1, min=0)
return output